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As the flow becomes rarefied it has been seen that predictions of continuum
formulations, such as the Navier–Stokes equations, become inaccurate. These
inaccuracies stem from the linear approximations to the stress and heat flux in the
viscous flux terms in the Navier–Stokes equations. Hence, it has long been conjectured
that the inclusion of higher-order terms in the constitutive relations for the stress and
heat flux may improve the predictive capabilities of such continuum formulations.
Following this approach, second-order systems of hydrodynamic equations, such as
the Burnett and Woods equations, were applied to the shock structure problem.
While it was observed that these equations afforded a better description of the shock
structure on coarse grids, they were prone to small wavelength instabilities when
the grids were refined. The cause of this instability was subsequently traced to the
fact that these equations can potentially violate the second law of thermodynamics
when the local Knudsen number exceeds a critical limit. This leads to the fundamental
question: is entropy consistency achievable in a system of second-order hydrodynamic
equations? To answer this question, a novel set of equations, known as the BGK-
Burnett equations, is constructed by taking moments of the Boltzmann equation for
the second-order distribution function.

The formulation of second-order hydrodynamic equations by moment methods is
beset by three hurdles: (i) the highly nonlinear collision integral in the Boltzmann
equation needs to be evaluated, (ii) the second-order distribution function does not
satisfy the moment closure criterion and (iii) identification of the approximations to
the material derivatives in the second-order distribution function that will correctly
account for the difference in time scales between the first- and second-order fluxes.
The first three terms of the Chapman–Enskog expansion, that defines the second-
order distribution function, and the Bhatnagar–Gross–Krook model of the collision
integral, form the basis of the BGK-Burnett equations. The entropy-consistent
behaviour of the equations depend on the moment closure coefficients and the
approximations to the material derivatives in the second-order fluxes. The requirement
of moment closure alone, however, results in non-unique closure coefficients and
a family of BGK-Burnett equations, from which an entropy-consistent set must
be identified. From this family, two sets of BGK-Burnett equations have been
considered, and this paper presents the details of the formulation of these two
sets of equations, the identification of entropy-consistent approximations to the
material derivatives by a novel entropy consistent relaxation technique, and shock
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structure computations in a monatomic hard sphere gas for a range of Mach
numbers.

1. Introduction
The classification of the various flow regimes is based on a dimensionless parameter,

known as the Knudsen number, which is a measure of the degree of rarefaction of
the medium. The Knudsen number Kn is defined as the ratio of the mean free
path and a characteristic length (i.e. Kn= λ/Lref) where λ denotes the mean free
path between molecular collisions and Lref denotes the characteristic length of the
geometry (e.g. the nose radius of a blunt body). At standard sea level conditions, for
air, λ ≈ 7.25×10−8 m and the gas is said to be in the continuum regime. The Knudsen
number in this regime, for most aerodynamic applications, is much less than unity.
Collisions between gas molecules are numerous and the gas can be considered to be
in thermodynamic equilibrium.

At an altitude greater than 150 km, where the density is much lower, the free-
stream Knudsen number is much greater than unity. This regime is known as the
free molecular regime. Collisions between molecules are so infrequent that they can
be neglected to a good approximation. The only collisions that need be considered
are those between the molecules and solid boundaries. Modelling flows in this regime
calls for a solution of the Boltzmann equation or a simulation of the same using the
Direct Simulation Monte Carlo (DSMC) technique (see Bird 1994).

In the continuum–transition flow regime, which lies between the extremes of the
continuum and free molecular regimes, the Knudsen number is in the neighbourhood
of unity. The Navier–Stokes equations yield inaccurate results, as the approximations
made in the constitutive relations for the stress and heat flux terms, which are
acceptable in the continuum regime, are not appropriate in the transitional regime.
The insufficient number of collisions between the molecules prevents the gas from
attaining thermodynamic equilibrium. This gives rise to regions of non-equilibrium
where more general constitutive relations are required to model the flow. To complicate
matters even further, there may be regions of continuum and rarefaction that occur
side by side. An example of this is the flow field around orbital transfer vehicles (OTV)
when they re-enter the upper atmosphere. For certain altitudes, the flow field close
to the fore-body region can be represented as a continuum, while the wake region
exhibits a high degree of rarefaction. Also, the small radii of curvature associated
with the cowl lip and nose cone geometries are characterized by high local Knudsen
numbers although the local Knudsen numbers may be in the continuum regime for
much of the remaining portions of the body.

While the flow in the continuum and rarefied regimes can be simulated to a high
degree of accuracy with computational fluid dynamics (CFD) solvers and DSMC
techniques, respectively, there are problems associated with the use of any one of
these computational tools alone in the continuum–transition regime (see Boyd, Chen
& Candler 1995). In this regime, the linear constitutive relations in the stress and heat
flux in the Navier–Stokes equations have been shown to yield inaccurate results. Also,
the large number of molecules required for meaningful results in the continuum–
transition regime makes the DSMC technique prohibitively expensive with regard
to computational time and storage requirements. Hence, it was conjectured that an
extended set of governing equations, which incorporates more general expressions for
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Figure 1. The Knudsen number limits on the conventional mathematical models of neutral
gas flows. Adapted from Moss & Bird (1984).

the constitutive relations, may extend the limits of applicability of the Navier–Stokes
equations. On including these new constitutive relations in traditional CFD solvers
(Navier–Stokes solvers in the continuum domain) it may be expected that in addition
to capturing the intricacies of the flow field they will also prove to be computationally
faster than Monte Carlo simulations.

1.1. Moment methods and higher-order hydrodynamic equations

One of the techniques for deriving higher-order constitutive relations is by the
method of moments. The idea behind this method is to formulate higher-order
distribution functions that describe the velocity (and internal energy) distribution
over the entire phase space. Moments of the Boltzmann equation, for the higher-
order distribution function, with the collision invariant vector give rise to an extended
set of hydrodynamic equations.

The Chapman–Enskog technique develops the higher-order distribution function
as a perturbative expansion about the equilibrium (Maxwellian) distribution with the
Knudsen number as the perturbation parameter. The Knudsen number is assumed
to be less than unity and each successive approximation to the distribution function
is proportional to successive powers of the Knudsen number. The higher-order
approximations are found by substituting the expansion in the non-dimensionalized
Boltzmann equation and equating terms that have like powers of the Knudsen
number. One of the advantages of using the Chapman–Enskog expansion is that it
does not introduce additional hydrodynamic variables or transport equations into
the system of hydrodynamic equations. Moments of the Boltzmann equation for
the first three terms of the Chapman–Enskog expansion, which define the second-
order distribution function, give rise to the Burnett equations. Beyond the first-order,
this expansion augments the stress and heat flux expressions in the Navier–Stokes
equations with terms that contain higher-order derivatives and products of derivatives.
A fundamental difficulty associated with such a formulation is that they do not
satisfy the moment closure property for distribution functions beyond the first-order.
Consequently, the resulting higher-order hydrodynamic equations do not form a
closed set, as shown in figure 1. The moment closure property requires that moments
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of the higher-order terms with the collision invariant vector vanish. This, in other
words, means that the field vector of the hydrodynamic equations, which consists of
the mass, momentum and total energy, remains the same for any system of governing
equations derived by this methodology. In order to satisfy this requirement, additional
terms, that are suitably weighted, are introduced to obtain closed-form expressions.
This introduces a certain degree of arbitrariness in the formulations which leads to
non-uniqueness in the magnitudes of the coefficients of the additional terms in the
second-order distribution function.

1.2. Burnett computations: successes and drawbacks

The work done by Fiscko & Chapman (1988), Zhong (1991) and Welder, Chapman &
MacCormack (1993) aimed at solving the time-dependent Burnett equations by
approximating the material derivatives in the second-order fluxes and using numerical
techniques developed for solving the time-dependent Navier–Stokes equations. This
approach extended the numerical methods for continuum flow into the continuum–
transition regime by including the Burnett expressions for stress and heat flux into
standard Navier–Stokes solvers. In one of the earliest successful computations of
the Burnett equations, Fiscko & Chapman (1988) used the Euler approximations to
the material derivatives (see Chapman & Cowling 1970) and solved the hypersonic
shock structure problem for a monatomic hard sphere gas and argon. The shock
structure solutions, obtained on coarse grids for a wide range of Mach numbers,
showed that the Burnett equations describe the shock structure better than the
Navier–Stokes equations. The Burnett solutions were in close agreement with the
results obtained from Monte Carlo simulations and experimental measurements (see
Alsmeyer 1976). However, grid refinement studies indicated that the Burnett equations
became unstable as the mesh size was made progressively finer. This was predicted
by Bobylev (1982) who showed that the linearized Burnett equations are unstable to
small wavelength disturbances. This instability made it impossible to obtain Burnett
solutions for complex three-dimensional flows above a certain altitude.

In an effort to overcome these instabilities, Zhong (1991) showed that the Burnett
equations could be stabilized by adding linear third-order terms from the super-
Burnett equations. This set of equations was termed the augmented Burnett equations.
The weights (coefficients) of these linear third-order terms were determined by a
linearized stability analysis of the augmented Burnett equations. The augmented
Burnett equations did not present stability problems when they were used to
compute the hypersonic shock structure and hypersonic blunt-body flows. Their
predictions of the hypersonic flow field were in agreement with DSMC computations
in the continuum–transition regime (see Zhong & Furumoto 1995; Agarwal, Yun &
Balakrishnan 2001). However, attempts at computing blunt-body wakes and flat-plate
boundary layers even with the augmented Burnett equations have not been entirely
successful. Complex hypersonic flow fields like those in the aft region of hypersonic
bodies (see Lumpkin 1990) and shock cowl lip interactions could not be computed
successfully with the augmented Burnett equations. It was also observed that the
augmented Burnett equations could orient the flow in a physically unrealistic manner
by allowing shear layers to sharpen to discontinuities and permitting heat flow from
cold to hot regions. Since this solution violates the second-law of thermodynamics,
it was conjectured that an inherent entropy inconsistency may be the cause of the
computational instability. Following this line of reasoning, a rigorous thermodynamic
analysis of the Burnett equations ensued, where it was shown by Comeaux (1995)
that the one-dimensional Burnett equations, when applied to the hypersonic shock
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structure problem, can violate the second law of thermodynamics as the local Knudsen
number increases above a critical limit.

Since the improperly modelled material derivatives in the higher-order stress and
heat flux give rise to instabilities that make the equations inconsistent with the second
law of thermodynamics, Jin, Pareschi & Slemrod (2002) and Jin & Slemrod (2001)
have proposed an algorithmic approach that develops relaxation equations for the
evolution of the stress and heat flux. The resulting relaxed Burnett system of equations
consists of the gas dynamic equations for the conserved variables and the equations
for the stress and heat flux. Since the stress and heat flux are not conserved quantities,
their evolution with standard shock capturing schemes for the conserved variables is
not possible. In addition, the time scale for the stress and heat flux are faster than
the time scales for the conserved variables, making the relaxed Burnett equations
stiff. While the relaxed Burnett equations are reported to give more accurate results
than the extended thermodynamic approximations and the Navier–Stokes equations,
the operator split schemes (see Jin et al. 2002) used to solve them appear to place
restrictions on the CFL condition.

Another approach by Al-Ghoul & Eu (2001), which is not based on kinetic theory,
develops evolution equations for the stress and heat flux on a phenomenological basis.
These evolution equations together with the gas dynamic equations for the conserved
variables constitute the set of generalized hydrodynamics equations. By introducing
the adiabatic approximation that assumes that the stress and heat flux are in the steady
state on the time scales of the conserved variables, they have obtained shock solutions
that compare well with experimental results. Since this approach does not have an
H-theorem, they have used calotropy production as a measure of entropy consistency
and shown solutions for a range of Mach numbers by integrating the stiff ordinary
differential equations. While it is rational to expect the non-conserved variables to
be in steady state on the time scales of the conserved variables and approximate
the material derivatives by their steady-state values, it has been shown (see Welder
et al. 1993) that for the Burnett and Woods equations, this approximation creates an
unphysical heat flux at the leading edge of the shock. As a result, the temperature
could drop to zero at the leading edge of the shock thereby causing the equations to
fail.

1.3. Motivation for a novel formulation

While the work of Comeaux (1995) demonstrated that the Burnett equations can
violate the second-law of thermodynamics under certain conditions, it was still
not clear what factors gave rise to negative irreversible entropy production. Such
unphysical effects could arise because the higher-order hydrodynamic equations do
not form a closed set. Also, as mentioned earlier, the Burnett coefficients were
derived for Maxwellian and hard sphere gas models. For a real gas, the coefficients
were assumed to lie between these two extremes and were determined using an
interpolation scheme devised by Lumpkin (1990). Further, it was noticed by the
author (see Balakrishnan 1999) that although the Burnett equations did take into
account the influence of forces between molecules (appropriately modelled) it did
not incorporate the corresponding higher-order virial expansion for the equation of
state. In all prior attempts at computing the Burnett equations, the ideal gas law
had been assumed. This, perhaps, was the reason for the increased instability with
the Maxwellian gas as compared to the hard sphere gas (see Fiscko & Chapman
1988; Zhong 1991). Another cause for such unphysical effects lies in the improper
approximation to the material derivatives in the second-order stress and heat flux
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terms. While the Euler approximation is found to be appropriate for the material
derivatives in the first-order terms, it remains, as yet, unknown what approximation
may account for the difference in relaxation times between the first- and second-order
fluxes.

Based on these observations, the formulation of the BGK-Burnett equations was
pursued with the objective of developing a system of entropy-consistent second-order
hydrodynamic equations for a monatomic hard sphere gas where there is no force field
between the constituent molecules. The formulation proceeds by deriving the second-
order distribution function by considering the first three terms of the Chapman–
Enskog expansion and using the Bhatnagar–Gross–Krook (BGK) model for the
collision integral. It has been shown (see Balakrishnan & Agarwal 1997; Balakrishnan,
Agarwal & Yun 1999) that the mere requirement of moment closure generates a
family of BGK-Burnett equations. The behaviour of these equations depends on the
closure coefficients as well as the approximations to the material derivatives in the
second-order fluxes. Consequently, given a set of equations belonging to this family,
the task of formulating an entropy-consistent set of equations is one of identifying
entropy-consistent approximations to the material derivatives. The entropy-consistent
approximations are identified by a novel entropy-consistent relaxation technique. This
approach is different from that of Al-Ghoul & Eu (2001) and Jin et al. (2002) in
that there are no additional equations for the evolution of the stress and heat flux
and it is not algorithmic. Instead, the aim of this work is to develop equations by
approximating the material derivatives to account for the difference in time scales
betwen the first- and second-order fluxes in an entropy-consistent manner.

For second- and higher-order departures from equilibrium, it is well known that
the Chapman–Enskog expansion destroys the frame invariant property. In particular,
it has been shown that the Burnett equations are not invariant to rotational
transformations (see Muller 1972). While there are other equations (see Woods
1993) that correct this, the formulation and analysis of the BGK-Burnett equations
presented in this paper is confined to solving the one-dimensional shock structure
problem where there is no vorticity; as a consequence of which the problems (and
errors) associated with the frame-dependent terms that arise in the computation
of shear layers with higher-order hydrodynamic equations in two and three spatial
dimensions are circumvented.

1.4. Outline of the paper

The structure of the paper is as follows. Section § 2 describes the formulation of
the second-order hydrodynamic equations known as the BGK-Burnett Model 1
equations. The Model 1a and Model 1b second-order stress and heat flux are derived
by neglecting and retaining, respectively, the material and spatial derivatives of the
collision frequency, and the expressions for the stress and heat flux are compared with
the Burnett and Woods equations. Section § 3 explores the need for approximating
the material derivatives in the second-order flux by presenting the linearized stability
analysis of the Model 1 equations. Section § 4 describes shock structure computations
using the Model 1a and Model 1b equations and identifies the fictitious viscosity that
causes the Model 1a equations to become unstable as the grids are refined. Section
§ 5 describes the Boltzmann’s H-theorem and the formulation of the expression for
the irreversible entropy production in the second-order equations. It is shown that the
Model 1b equations produce negative irreversible entropy at medium Mach numbers
as the grid fineness ratio is reduced. Section § 6 describes the approach to identify
entropy-consistent BGK-Burnett equations by using the novel entropy-consistent
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relaxation technique and the results of this approach when applied to the Model 1b
equations. Section § 7 presents the formulation of the Model 2 equations with the
additional constraint that the linearized Model 2 and linearized Navier–Stokes
equations have similar stability characteristics. It is demonstrated that the Model
2b equations are entropy-consistent. Shock structures for free-stream Mach numbers
1.2, 5, 10 and 20 are computed with the Model 2b equations and the shock profiles
and shock thickness are compared with results obtained from DSMC computations
and with experimental data. Section § 8 presents the conclusions and summarizes the
main findings of this work.

2. Distribution functions
A molecule is characterized by its position r , velocity v and internal energy ε which

together constitutes a seven-dimensional phase space. The simplest function that
contains this information, at any given instant of time, is the distribution function.
Mathematically speaking, the distribution function expresses the probability of finding
molecules in the physical volume d3r whose velocities and internal energy lie in the
range v to v + dv and ε to ε + dε, respectively. Such molecules are said to belong to
the class C (v, ε). The number density or expected number of such molecules per unit
volume is defined as

n(r, t) =

∫
�3

∫
�+

F (t, r, v, ε) d3v dε (2.1)

where � = (−∞, ∞), �+ = [0, ∞) and the distribution function is given by the mapping

F = F (t, r, v, ε) : �+ × �3 × �3 × �+ → �+. (2.2)

The flow variables that are described by the hydrodynamic equations are averages
of quantities that depend on the velocity and internal energy of the constituent
molecules. These averages are defined as moments of the distribution function.

Definition. The moment of a function, φ =φ(t, v, ε) : �+ × �3 × �+ → �, is
defined as the inner product

φ̄(r, t) = 〈φ(v, ε), f (t, r, v, ε)〉 =

∫
�3

∫
�+

φ(t, v, ε)f (t, r, v, ε) d3v dε, (2.3)

where, the distribution function is normalized as

f (t, r, v, ε) =
F (t, r, v, ε)

n(r, t)
(2.4)

such that

〈f (t, r, v, ε)〉 =

∫
�3

∫
�+

f (t, r, v, ε) d3v dε = 1. (2.5)

If the gas is assumed to be composed of a single species of identical molecules, then
in the absence of external forces, the Boltzmann equation which expresses the number
conservation of the gas molecules is given by(

∂

∂t
+ v · ∇r

)
ρf =

[
dρ(r, t)

dt

]
coll

= J [f (v, ε), f (v1, ε1)] (2.6)
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where the collisions integral, J [f (v, ε), f (v1, ε1)], is given by (see Vincenti & Kruger
1965) ∫

�+

∫
�3

∫ 4π

0

ρ2[f (v′, ε ′)f (v′
1, ε

′
1) − f (v, ε)f (v1, ε1)]gσ dω d3v1 dε1, (2.7)

where ρ(r, t) is the density of the gas, g = v1 − v is the relative velocity vector
between the colliding pairs and σ dω denotes the collision cross-section. The primed
variables denote post-collisional values. The collision integral represents the rate of
change of the number of molecules due to two competing collision processes: direct
collisions between molecules of classes C (v, ε) and C1(v1, ε1) that deplete the number
of molecules in C (v, ε) and inverse collisions between molecules of C ′(v′, ε ′) and
C ′

1(v
′
1, ε

′
1) that replenish the number of molecules in C (v, ε). The collision integral is

a function of v and ε after the integrations over v1 and ε1 are carried out.
By setting the kernel of the collision integral equal to zero we obtain

loge f (v′, ε ′) + loge f (v′
1, ε

′
1) = loge f (v, ε) + loge f (v1, ε1), (2.8)

which expresses the conservation of physical variables during the collision process.
These physical variables, also known as collision variables, are readily seen to be the
mass, momentum and total energy of the colliding pairs of molecules. By considering
the conservation of total energy (see Deshpande 1986), as opposed to conservation of
translational kinetic energy alone, it is theoretically possible to extend the definition of
the distribution function to polyatomic gases. In practice, however, such an extension
must account for the time lag in the transfer of energy from the translational mode
to the internal degrees of freedom. The Maxwellian distribution function for one-
dimensional hydrodynamic flows is given by

f (0) =
ρ

I0

√
β

π
exp(−I/I0) exp

(
−βC2

x

)
(2.9)

where I = ε + v2
x/2+ v2

y/2, β = 1/2RT , Cx = vx − ux is the thermal or peculiar velocity

and I0 = 〈I, f (0)〉 denotes the average internal energy. Hereinafter, I will be referred to
as the internal energy, although it must be understood that only in three-dimensional
hydrodynamic equations is I equal to the actual internal energy ε (see Balakrishnan
1999). Throughout this paper the molecular, fluid and thermal velocity components
will be denoted by (vx, vy, vz), (ux, uy, uz) and (Cx, Cy, Cz), respectively. It must be
noted that such a notation does not represent partial derivatives with respect to the
subscripted variable. The variables that are conserved in a collision process define the
collision invariant vector,

Ψ =
[
1, vx, I + 1

2
v2

x

]T
. (2.10)

From here on, the density of the gas ρ(r, t) has been absorbed in the expression for
the distribution function as a result of which 〈f 〉 = ρ. The collision integral satisfies
the relation

〈Ψ , J [f (v, I ), f (v1, I1)]〉 = 0, (2.11)

thereby indicating that the corresponding collision variables in the macroscopic scale
are conserved too. By taking moments of the Boltzmann equation for the Maxwellian
distribution function

∂

∂t

〈
Ψ , f (0)

〉
+

∂

∂x

〈
vxΨ , f (0)

〉
= 0 (2.12)
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we obtain the Euler equations

∂ Q
∂t

+
∂Gi

∂x
= 0 (2.13)

where the field vector Q = 〈Ψ , f (0)〉 and inviscid flux vector Gi = 〈vxΨ , f (0)〉 are given
by

Q =

 ρ

ρux

ρet

, Gi =

 ρux

p + ρu2
x

pux + ρetux

.

2.1. Bhatnagar–Gross–Krook (BGK) model and higher-order distribution functions

In order to develop the Navier–Stokes and other higher-order hydrodynamic
equations to model gas flows in conditions that are removed from collisional
equilibrium, an expression for the corresponding distribution function is sought. The
difficulties encountered in developing higher-order distribution functions are largely
due to the highly nonlinear nature of the collision integral. Bhatnagar (1954) proposed
a model equation to approximate the collision integral that reduces the mathematical
complexity but retains many of its qualitative features. The BGK model equation is
expressed as

J [f (v, I ), f (v1, I1)] = ν
(
f (0) − f

)
, (2.14)

where f (0) is the local Maxwellian and ν is the collision frequency that may depend
on the density and temperature, but is assumed to be independent of the molecular
velocity v. In this model equation, the depleting and replenishing collisions are
assumed to be proportional to the collision frequency and the distribution function
after collision obeys the local Maxwellian. This implies that any non-equilibrium
distribution function decays to the local Maxwellian with a relaxation time equal
to the reciprocal of the collision frequency. Owing to the presence of the local
Maxwellian, the resulting Boltzmann equation (2.15) continues to be a nonlinear
integro-differential equation. This is because f (0) depends on ux and I0 that are
obtained as moments of the, as yet, unknown non-equilibrium distribution function
f . The limitations of this model, as for instance a constant Prandtl number, Pr= 1,
are well known and will be accepted with the knowledge that more sophisticated
models for the collision integral can be constructed (see Holway 1965; Abe & Oguchi
1977) to overcome these inherent deficiencies. It suffices to say that the BGK model of
the collision integral satisfies the minimum requirements of the Boltzmann equation:
it has the required collision invariants that satisfy the moment property (2.11), it
has an H-theorem and it reduces the non-equilibrium distribution function f to the
Maxwellian distribution f (0) as time t → ∞.

The one-dimensional Boltzmann equation with the BGK model for the collision
integral is given by

∂f

∂t
+ vx

∂f

∂x
= ν
(
f (0) − f

)
. (2.15)

On introducing the non-dimensional variables, x̂ = x/Lref, v̂x = vx/Crms, ν̂ =(νλ)/Crms

and t̂ = tCrms/Lref, (2.15) reduces to the form

ξ

(
∂f

∂t̂
+ v̂x

∂f

∂x̂

)
= ν̂
(
f (0) − f

)
, (2.16)

where ξ = λ/Lref is the local Knudsen number. The local Knudsen number accounts
for the scaling due to the difference in time scales between the streaming and
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collision operators in (2.15). The Chapman–Enskog expansion for the non-equilibrium
distribution function is given by

f = f (0) + ξf (1) + ξ 2f (2) + · · · (2.17)

where the higher-order terms in the distribution function, f (i), ∀ i = 1, 2, . . . , are
proportional to the corresponding power of ξ . Substituting (2.17) into (2.16) and
equating like powers of the Knudsen number gives the following equation for the
higher-order terms in the distribution function:

f (i) = − 1

ξν

(
∂

∂t
f (i−1) + vx

∂

∂x
f (i−1)

)
. (2.18)

2.2. First-order distribution function

The first-order distribution function is obtained by considering the first two terms of
the Chapman–Enskog expansion,

f = f (0) + ξf (1) = f (0)
(
1 + ξφ(1)

)
, (2.19)

which on simplification (see Balakrishnan 1999) gives

f (1) = −f (0)

ξν

[
A(1)(I, Cx)

∂β

∂x
+ A(2)(I, Cx)

∂ux

∂x

]
, (2.20)

where

A(1)(I, Cx) =
5

2β
Cx − I

βI0

Cx − C3
x ,

A(2)(I, Cx) = (3 − γ )βC2
x − (γ − 1)

I

I0

+
(3γ − 5)

2
.

 (2.21)

It can be shown that (2.20) and (2.21) readily satisfy the moment closure relation〈
Ψ , ξ if (i)

〉
= 0, ∀ i � 1. (2.22)

The physical interpretation of (2.22) is that the higher-order terms in the distribution
function do not add any additional terms to the field vector Q of the conservation
equations. More importantly, the continuity equation remains unchanged. On taking
moments of the Boltzmann equation for the first-order distribution function

∂

∂t

〈
Ψ ,
(
f (0) + ξf (1)

)〉
+

∂

∂x

〈
vxΨ ,

(
f (0) + ξf (1)

)〉
= 0, (2.23)

we obtain the Navier–Stokes equations

∂ Q
∂t

+
∂Gi

∂x
+

∂Gv

∂x
= 0, (2.24)

where the viscous flux vector

Gv = −1

ν


0

(3 − γ )
ρ

2β

∂ux

∂x

(3 − γ )
ρux

2β

∂ux

∂x
− γ

(γ − 1)

ρ

4β3

∂β

∂x

 =

 0
−τ v

xx

−uxτ
v
xx + q̇v

x

 . (2.25)

From the first-order viscous flux vector, we identify the molecular viscosity µ =p/ν

and thermal conductivity κ = (µγR)/(γ −1) to obtain the familiar expressions for the
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Navier–Stokes (first-order) stress and heat flux

τ v
xx = (3 − γ )µ

∂ux

∂x
, q̇v

x = −κ
∂T

∂x
(2.26)

and note that the Prandtl number Pr = µCp/κ =1, where Cp is the specific heat at
constant pressure.

2.3. Second-order distribution function: Model 1

The second-order distribution function is defined by the first three terms of the
Chapman–Enskog expansion

f = f (0) + ξf (1) + ξ 2f (2). (2.27)

From (2.18), we obtain an expression for f (2) in terms of f (1)

f (2) = − 1

ξν

[
∂

∂t

(
f (1)
)

+
∂

∂x

(
uxf

(1)
)

+
∂

∂x

(
Cxf

(0)φ(1)
)]

. (2.28)

Unlike the expression for f (1), it can be seen that (2.28) does not satisfy (2.22). This
is not surprising, as the moment

〈
CxΨ , f (0)φ(1)

〉
gives rise to the viscous flux vector

Gv in the Navier–Stokes equations. This calls for additional moment closure terms
and associated coefficients that satisfy (2.22). From (2.28) and (2.21) we write〈

CxΨ , f (0)φ(1)
〉

=
〈
Ψ , f (0)φ′(1)〉

. (2.29)

where

φ′(1) = Cxφ
(1)

= − 1

ξν

[
B(1)(I, Cx)

∂β

∂x
+ B(2)(I, Cx)

∂ux

∂x

]
,

B(1)(I, Cx) =
5

2β
C2

x − I

βI0

C2
x − C4

x ,

B(2)(I, Cx) = (3 − γ )βC3
x − (γ − 1)

I

I0

Cx + 1
2
(3γ − 5)Cx.


(2.30)

On evaluating the moments of B(1)(I, Cx) in (2.30), we obtain〈
Ψ 1 = 1, f (0)B(1)(I, Cx)

〉
= 0,〈

Ψ 2 = vx, f
(0)B(1)(I, Cx)

〉
= 0,〈

Ψ 3 = I + 1
2
v2

x, f
(0)B(1)(I, Cx)

〉
= − γρ

4β3(γ − 1)
.

 (2.31)

Since the moment 〈Ψ , f (0)B(1)(I, Cx)〉 is not equal to zero, we need to include
additional terms that are suitably weighted. It is evident that there is no unique
expression for these additional terms. In an effort to keep the expression simple, we
define a moment closure function

B̃(1)(I, Cx) = B(1)(I, Cx) + ω1

(
1
2
C2

x − C4
x

)
+ ω2

I

βI0

C2
x , (2.32)

where the forms of the additional terms are chosen to be similar to those in
B(1)(I, Cx). We choose only two undetermined coefficients as there are only two
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equations available to complete the definition of B̃(1)(I, Cx)〈
I +

C2
x

2
, f (0)B̃(1)(I, Cx)

〉
= 0,〈

1, f (0)B̃(1)(I, Cx)
〉

= 0.

 (2.33)

Calculating the moments in (2.33) yields the equations〈
1, f (0)B̃(1)(I, Cx)

〉
= 0 ⇐⇒ ω1 = 2ω2, (2.34)〈

I + 1
2
C2

x , f
(0)B̃(1)(I, Cx)

〉
= 0 ⇐⇒ ω2(γ + 3) − ω1(4γ − 3) = 2γ, (2.35)

which give

ω1 =

(
4γ

9 − 7γ

)
, ω2 =

(
2γ

9 − 7γ

)
. (2.36)

Equation (2.32) is now written as

B̃(1)(I, Cx) =

(
5

2β
+

ω1

β

)
C2

x +
I

βI0

C2
x (ω2 − 1) − C4

x (1 + ω1) . (2.37)

The moments of B̃(2)(I, Cx) in (2.30) are evaluated in a similar manner. Since

B̃(2)(I, Cx) is an odd function of Cx , all odd integrals over � disappear, yielding〈
Ψ 1 = 1, f (0)B(2)(I, Cx)

〉
= 0,〈

Ψ 2 = vx, f
(0)B(2)(I, Cx)

〉
= (3 − γ )

ρ

2β
,〈

Ψ 3 = I + 1
2
v2

x, f
(0)B(2)(I, Cx)

〉
= (3 − γ )

ρux

2β
.

 (2.38)

As the moments with Ψ 2 and Ψ 3 in (2.38) are multiples of each other, we require
only one undetermined coefficient in the moment closure function

B̃(2)(I, Cx) = B(2)(I, Cx) + ω3

[
βC3

x − I

I0

Cx + Cx

]
. (2.39)

Evaluating the moment 〈Cx, f
(0)B̃(2)(I, Cx)〉 and setting it equal to zero gives

B̃(2)(I, Cx) = β((3 − γ ) + ω3)C
3
x − I

I0

((γ − 1) + ω3)Cx + 1
2
(3γ − 5) + ω3Cx, (2.40)

where

ω3 = − 2
3
(3 − γ ). (2.41)

The complete expression for the second-order distribution function is given by

f = f (0) + ξf (1) − ξ

ν

[
∂

∂t

(
f (1)
)

+
∂

∂x

(
uxf

(1)
)

+
∂

∂x

(
f (0)φ̃(1)

)]
, (2.42)

where

φ̃(1) = − 1

ξν

[
B̃(1)(I, Cx)

∂β

∂x
+ B̃(2)(I, Cx)

∂ux

∂x

]
,

B̃(1)(I, Cx) =
θ1

β
C2

x + θ2

I

βI0

C2
x + θ3C

4
x ,

B̃(2)(I, Cx) = θ4βC3
x + θ5

I

I0

Cx + θ6Cx,


(2.43)

and the moment closure coefficients are given in table 1.
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ω1 =
4γ

(9 − 7γ )
ω2 =

2γ

(9 − 7γ )
ω3 = − 2

3
(3 − γ )

θ1 = 5
2

+ ω1 θ2 = ω2 − 1 θ3 = −(1 + ω1)

θ4 = (3 − γ ) + ω3 θ5 = −(γ − 1) − ω3 θ6 = 1
2
(3γ − 5) + ω3

Table 1. Closure coefficients of the Model 1 second-order distribution function given by
equations (2.42) and (2.43). These coefficients are functions of the specific heat ratio γ .

2.4. BGK-Burnett equations: Model 1

On taking moments of the Boltzmann equation for the second-order distribution
function

∂

∂t

〈
Ψ , f (0) + ξf (1) + ξ 2f (2)

〉
+

∂

∂x

〈
vxΨ , f (0) + ξf (1) + ξ 2f (2)

〉
= 0, (2.44)

we obtain the BGK-Burnett equations

∂ Q
∂t

+
∂Gi

∂x
+

∂Gv

∂x
+

∂GB

∂x
= 0. (2.45)

The BGK-Burnett flux vector (second-order flux vector) is given by

GB =

〈
vxΨ , −ξ

ν

[
D

D t
f (1) + f (1) ∂ux

∂x
+

∂

∂x
f (0)φ̃(1)

]〉
=

 0
−τB

xx

−uxτ
B
xx + q̇B

x

, (2.46)

where D/D t = ∂/∂t + ui∂/∂xi is the material derivative operator. The BGK-Burnett
stress and heat flux, τB

xx and q̇B
x , are given by

τB
xx = − 1

ν2

[
Ω1

β

Dρ

D t

∂ux

∂x
+ Ω1

ρ

β

D

D t

(
∂ux

∂x

)
− Ω1

ρ

β2

Dβ

D t

∂ux

∂x
+ Ω1

ρ

β

(
∂ux

∂x

)2
+

Ω2

β3

∂ρ

∂x

∂β

∂x

+ Ω2

ρ

β3

∂2β

∂x2
− 3Ω2

ρ

β4

(
∂β

∂x

)2 ]
+

1

ν3

[
Ω1

ρ

β

∂ux

∂x

Dν

D t
+ Ω2

ρ

β3

∂β

∂x

∂ν

∂x

]
(2.47)

and

q̇B
x =

1

ν2

[
Ω1

ρ

β

Dux

D t

∂ux

∂x
− Ω3

β3

Dρ

D t

∂β

∂x
+ 3Ω3

ρ

β4

Dβ

D t

∂β

∂x
− Ω3

ρ

β3

D

D t

(
∂β

∂x

)

+ (Ω2 − Ω3)
ρ

β3

∂β

∂x

∂ux

∂x
+

Ω4

β2

∂ρ

∂x

∂ux

∂x
+ Ω4

ρ

β2

∂2ux

∂x2
− 2Ω4

ρ

β3

∂β

∂x

∂ux

∂x

]

+
1

ν3

[
Ω3

ρ

β3

∂β

∂x

Dν

D t
− Ω4

ρ

β2

∂ux

∂x

∂ν

∂x

]
, (2.48)

where the second-order stress and heat flux coefficients are given in table 2. The
presence of the material derivatives in (2.47) and (2.48) make the expressions for
the BGK-Burnett stress and heat flux very general and give rise to a large number
of representational forms. The various forms, which arise from the approximations
employed in representing the material derivatives, and the choice of either considering
the effects of spatio-temporal variations in the molecular collision frequency or not,
open up the potential to formulate expressions for τB

xx and q̇B
x that make the BGK-

Burnett equations entropy-consistent.
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Ω1 = 1
2
(3 − γ ) Ω2 = 3

4

(
θ1 + θ2 + 5

2
θ3

)
Ω3 =

γ

4(γ − 1)
Ω4 =

1

8(γ − 1)
[θ4(6γ − 3) + θ5(γ + 3) + θ6(2γ )]

Table 2. Stress and heat flux coefficients of the Model 1 equations (2.47) and (2.48). These
coefficients are functions of the Model 1 closure coefficients and the specific heat ratio γ .

2.4.1. Model 1a: second-order flux without the derivatives Dν/D t and ∂ν/∂x

In this model of the second-order stress and heat flux, the derivatives Dν/D t and
∂ν/∂x in equations (2.47) and (2.48) are neglected. This assumption is based on the
observation that, in weak shocks, the rise in the pressure p and molecular viscosity
µ is such that the variations in the ratio ν =p/µ could be neglected (see figures 7a

and 7b and the explanation in § 4 for the rationale behind this assumption). The
expressions for the Model 1a stress and heat flux take the form

τB
xx = −µ2

p

[
2Ω1

(
1

ρ

Dρ

D t
+

1

T

DT

D t

)
︸ ︷︷ ︸

1a

∂ux

∂x
+ 2Ω1

D

D t

(
∂ux

∂x

)

+ 2Ω1

(
∂ux

∂x

)2
− 4Ω2R

∂2T

∂x2
− 4Ω2R

(
1

ρ

∂ρ

∂x
+

1

T

∂T

∂x

)
︸ ︷︷ ︸

2a

∂T

∂x

]
(2.49)

and

q̇B
x =

µ2

ρ

[
4Ω3

T

(
1

ρ

Dρ

D t
+

1

T

DT

D t

)
︸ ︷︷ ︸

3a

∂T

∂x
+ 4Ω4

(
1

ρ

∂ρ

∂x
+

1

T

∂T

∂x

)
︸ ︷︷ ︸

4a

∂ux

∂x
+ 4Ω4

∂2ux

∂x2

+
4Ω3

T

D

D t

(
∂T

∂x

)
+ 4 (Ω4 − Ω2 + Ω3)

1

T

∂T

∂x

∂ux

∂x
+

2Ω1

RT

Dux

D t

∂ux

∂x

]
. (2.50)

On using the continuity equation to express Dρ/D t and the Euler equations to
express the material derivatives Dux/D t and DT /D t in (2.49) and (2.50), we obtain

τB
xx = −µ2

p

[
−2Ω1

(
∂ux

∂x

)2
+ 2Ω1

D

D t

(
∂ux

∂x

)
− 4Ω2

R

ρ

∂ρ

∂x

∂T

∂x

− 4Ω2R
∂2T

∂x2
− 4Ω2

R

T

(
∂T

∂x

)2 ]
(2.51)

and

q̇B
x =

µ2

ρ

[
(8Ω4 − 4Ω2 − 4Ω3(γ − 1) − 2Ω1)

1

T

∂T

∂x

∂ux

∂x

+ 4Ω3

1

T

D

D t

(
∂T

∂x

)
+ 4Ω4

(
∂2ux

∂x2

)
+ (4Ω4 − 2Ω1)

1

ρ

∂ρ

∂x

∂ux

∂x

]
. (2.52)
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2.4.2. Model 1b: second-order flux with derivatives Dν/D t and ∂ν/∂x present

In this model, we retain the material and spatial derivatives of the collision frequency
Dν/D t and ∂ν/∂x, respectively. Substituting ν = p/µ in equations (2.47) and (2.48),
and using the continuity and Euler equations to express the material derivatives
Dρ/D t , Dux/D t and DT /D t gives

τB
xx = −µ2

p

[
2Ω1

(
1

µ

Dµ

D t

)
︸ ︷︷ ︸

1b

∂ux

∂x
+ 2Ω1

D

D t

(
∂ux

∂x

)

+ 2Ω1

(
∂ux

∂x

)2
− 4Ω2R

∂2T

∂x2
− 4Ω2R

(
1

µ

∂µ

∂x

)
︸ ︷︷ ︸

2b

∂T

∂x

]
(2.53)

and

q̇B
x =

µ2

ρ

[
4Ω3

T

(
1

µ

Dµ

D t

)
︸ ︷︷ ︸

3b

∂T

∂x
+4Ω4

(
1

µ

∂µ

∂x

)
︸ ︷︷ ︸

4b

∂ux

∂x
+4Ω4

∂2ux

∂x2
+

4Ω3

T

D

D t

(
∂T

∂x

)

+ 4 (Ω4 − Ω2 + Ω3)
1

T

∂T

∂x

∂ux

∂x
+

2Ω1

RT

Dux

D t

∂ux

∂x

]
. (2.54)

When the force of repulsion between gas molecules is modelled as F ∝ 1/rn, where
r is the distance between molecules, it can be shown from kinetic theory that the
variation of viscosity with temperature is given by the power law constitutive relation

µ/µref = (T/Tref)
ω, (2.55)

where the exponent ω = 1/2 + 2/(n − 1). Since the formulation of the BGK-Burnett
equations assumes the gas molecules to be rigid elastic spheres, the so-called hard
sphere gas, we set n= ∞ to obtain ω = 0.5. By using (2.55) to express the material
and spatial derivatives Dµ/D t and ∂µ/∂x in equations (2.53) and (2.54), we obtain

τB
xx = −µ2

p

[
2Ω1(1 − ω(γ − 1))

(
∂ux

∂x

)2
+ 2Ω1

D

D t

(
∂ux

∂x

)

− 4Ω2R
∂2T

∂x2
− 4Ω2

ωR

T

(
∂T

∂x

)2 ]
(2.56)

and

q̇B
x =

µ2

ρ

[
(4Ω4 − 4Ω2 + 4Ω3(1 − ω(γ − 1)) + 4Ω4ω − 2Ω1)

1

T

∂T

∂x

∂ux

∂x

+ 4Ω3

1

T

D

D t

(
∂T

∂x

)
+ 4Ω4

∂2ux

∂x2
− 2Ω1

1

ρ

∂ρ

∂x

∂ux

∂x

]
. (2.57)

2.4.3. Comparing the Model 1a, Model 1b, Burnett and Woods second-order flux

On comparing the stress in Model 1a (2.51) with the stress in the Burnett equation
(2.58) (see Welder et al. 1993) we notice that both sets of expressions have the same
set of derivatives, although the coefficients are different. In the Model 1b stress (2.56),
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ω1 = 4
3

(
7
2

− ω
)

ω2 = 2 ω3 = 3

ω4 = 0 ω5 = 3ω ω6 = 8

θ1 = 15
4

(
7
2

− ω
)

θ2 = 45
8

θ3 = −3

θ4 = 3 θ5 = 3
(

35
4

+ ω
)

Table 3. Burnett stress and heat flux coefficients in equations (2.58) and (2.59) from Welder
et al. (1993). These coefficients must not be confused with the Model 1 closure coefficients
(see table 1). These coefficients are functions of the exponent ω in the viscosity relation
µ/µref =

(
T/Tref

)ω
.

ω̃1 = 4
3
(4 − ω) ω̃3 = 3 ω̃5 = 3ω ω̃6 = 6

θ̃1 = 15
4

(
9
2

− ω
)

θ̃2 = 45
4

θ̃5 = 3
(

35
4

+ ω
)

Table 4. Woods stress and heat flux coefficients in equations (2.60) and (2.61) from Reese
et al. (1995).These coefficients, like the Burnett coefficients are functions of the exponent ω in
the viscosity relation µ/µref = (T/Tref)

ω .

we note the absence of the term (R/ρ)(∂ρ/∂x)(∂T /∂x) which is present in (2.51) and
(2.58). A comparison of the Model 1b stress with the Woods stress (see Reese et al.
1995) reveals that the material derivative D/D t(∂ux/∂x) that is present in (2.56) is
absent in (2.60). A comparison of the heat flux in Model 1a (2.52) and Model 1b
(2.57) shows that including the material and spatial derivatives of the collision
frequency do not affect the derivatives present in the heat flux. Further, both these
heat flux expressions have the same derivatives that are present in the Burnett heat
flux (2.59). The expression for the Woods heat flux (2.61) does not have the terms
(1/ρ)(∂ρ/∂x)(∂ux/∂x) and ∂2ux/∂x2 that are present in (2.52), (2.57) and (2.59).

τ oB
xx = −µ2

p

[ (
2
3
ω1 − 8

9
ω2 + 2

9
ω6

)(∂ux

∂x

)2
+ 2

3
ω2

D

D t

(
∂ux

∂x

)

+ 2
3
ω4

R

ρ

∂ρ

∂x

∂T

∂x
+ 2

3
ω3R

∂2T

∂x2
+ 2

3
(ω4 + ω5)

R

T

(
∂T

∂x

)2 ]
, (2.58)

q̇oB
x =

µ2

ρ

[(
θ1 − θ2 +2

3
θ3 +2

3
θ5

) 1

T

∂ux

∂x

∂T

∂x
+ θ2

1

T

D

D t

(
∂T

∂x

)
+2

3
θ4

∂2ux

∂x2
+2

3
θ3

1

ρ

∂ρ

∂x

∂ux

∂x

]
,

(2.59)

τW
xx = −µ2

p

[(
2
3
ω̃1 + 2

9
ω̃6

)(∂ux

∂x

)2

+ 2
3
ω̃3R

∂2T

∂x2
+ 2

3
ω̃5

R

T

(
∂T

∂x

)2
]
, (2.60)

q̇W
x =

µ2

ρ

[(
θ̃1 + 2

3
θ̃5

) 1

T

∂ux

∂x

∂T

∂x
+ θ̃2

1

T

D

D t

(
∂T

∂x

)]
. (2.61)

The expressions for the stress and heat flux coefficients in the Burnett and Woods
equations are given in tables 3 and 4. It must be noted, that although the derivatives
in the stress expressions in equations (2.51) and (2.58) are the same, the coefficients
are quite different. The same is true of the heat flux equations (2.52), (2.57) and (2.59).
While the stress and heat flux coefficients in the Burnett and Woods equations are
functions of the exponent ω in equation (2.53), the stress and heat flux coefficients
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BGK-Burnett BGK-Burnett
τ (II )
xx and q̇ (II )

x Model 1a Burnett Model 1b Woods

A1 −1.3333 2.6667 0.889 4.444
A2 1.3333 1.3333 1.3333 0
A3 −4.5 0.0 0.0 0.0
A4 −4.5 2.0 −4.5 2.0
A5 −4.5 1.0 −2.25 1.0
B1 −5.722 22.125 −2.833 33.5
B2 2.5 5.625 2.5 11.25
B3 0.889 2.0 0.889 0
B4 −0.444 −2.0 −1.333 0

Table 5. A comparison of the Model 1a, Model 1b, Burnett and Woods stress and heat
flux coefficients for a monatomic hard sphere gas, i.e. γ = 1.666, ω =0.5. Boldface characters
highlight the Model 1a and Model 1b coefficients that have a different sign when compared
with the Burnett and Woods coefficients.

of the BGK-Burnett equations are functions of the specific heat ratio γ . In order to
compare the magnitudes of these coefficients, the second-order stress and heat flux are
written in the generic form shown in equations (2.62) and (2.63) where the functional
form of the coefficients Aj ∀ j = 1, . . . , 5 and Bk ∀ k =1, . . . , 4 may be identified from
the expressions for the stress and heat flux in the corresponding equations.

τ (II )
xx = − µ2

p

[
A1

(
∂ux

∂x

)2
+ A2

D

D t

(
∂ux

∂x

)
+ A3

R

ρ

∂ρ

∂x

∂T

∂x
+ A4R

∂2T

∂x2
+ A5

R

T

(
∂T

∂x

)2]
,

(2.62)

q̇ (II )
x =

µ2

ρ

[
B1

1

T

∂ux

∂x

∂T

∂x
+ B2

1

T

D

D t

(
∂T

∂x

)
+ B3

∂2ux

∂x2
+ B4

1

ρ

∂ρ

∂x

∂ux

∂x

]
. (2.63)

A comparison of the stress and heat flux coefficients of the Model 1a, Model 1b,
Burnett and Woods equations for a monatomic hard sphere gas is presented in table 5.
It is observed that inclusion of the material and spatial derivatives of the collision
frequency changes the sign of the A1 coefficient that multiplies the (∂ux/∂x)2 term
in the Model 1a and Model 1b equations. Since the (∂ux/∂x)2 term assumes large
values for strong shocks, the behaviour of the Model 1b equations, when applied to
the shock structure problem, can be expected to be quite different from the Model 1a
equations.

2.5. An approach to identifying entropy consistent BGK-Burnett equations

As mentioned earlier, the mere requirement that the moment closure equation
be satisfied, gives rise to a family of BGK-Burnett equations where each set of
BGK-Burnett equations is based on a set of non-unique closure coefficients and
approximations to the material derivatives in the second-order stress and heat flux.
Since there are a multitude of approximations for the material derivatives, each of
which must, subsequently, be tested for entropy consistency, certain criteria must
be imposed to identify a set of candidate approximations. The requirement that
the linearized BGK-Burnett equations be stable to small perturbations, is one such
criterion. The set of stable approximations to the material derivatives constitutes the
short list of candidate approximations that is used in the complete set of nonlinear
equations to solve for the shock structure in monatomic hard sphere gases. The task
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Figure 2. This diagram shows the approach taken to identify entropy-consistent BGK-Burnett
equations. The region ‘A’ denotes the family of Model xa equations that are formed by
neglecting the Dν/D t and ∂ν/∂x in equations (2.47) and (2.48). The region ‘B’ denotes the
family of Model xb equations that are formed by retaining the material and spatial derivatives
of the collision frequency ν. The linearized Model xa and Model xb equations are identical,
the set of stable linearized equations obtained by considering various approximations to the
material derivatives is denoted by the region ‘C’. The material derivatives D/D t(∂ux/∂x) and
D/D t(∂T /∂x) in the stress and heat flux in each of these families (see equations (2.51), (2.52),
(2.56), (2.57)) needs to be approximated since it is shown in § 3 that the exact form of the
material derivatives do not make the equations stable and entropy-consistent. Since the Model
xa equations are shown to be incorrect in § 4 (due to the fictitious viscosity µ̆), we use the
entropy-consistent relaxation technique, described in § 6, to identify those stable approximations
to the material derivatives that will also make the Model xb equations entropy-consistent. The
set of entropy-consistent Model xb equations is denoted by the region ‘D’. Using this approach,
it is shown in § 7 that the Model 2b equations are entropy-consistent.

of identifying an entropy-consistent set of BGK-Burnett equations is approached (see
figure 2) by posing the following questions:

(i) Given a set of closure coefficients that satisfy the moment closure relationship,
what approximations to the material derivatives will yield a stable set of linearized
equations?

(ii) Given a set of approximations to the material derivatives that guarantees
stability of the linearized BGK-Burnett equations, how do we identify a set of
approximations that is also entropy-consistent?

The answer to the first question is obtained by linearizing the BGK-Burnett
equations and looking for approximations to the material derivatives that make
the linearized system stable. The answer to the second question lies in the entropy-
consistent relaxation technique (ECRT) that is developed in § § 6 and 7. For each
set of closure coefficients that satisfy the moment closure criterion, the proposed
methodology is a two-stage process that looks for stable approximations to the
material derivative that are also entropy-consistent.

3. Linearized stability analysis of the BGK-Burnett equations
From table 5 we note that there are significant differences between the stress and

heat flux coefficients of the Model 1a, Model 1b, Burnett and Woods stress and heat
flux relations. A first step in the analysis of the Model 1 equations was a comparison
of the stability characteristics of the Model 1, Burnett and Woods equations when
subjected to small perturbations. In particular, the linearized stability analysis of
the Model 1 equations was performed to identify approximations to the material
derivatives D/D t(∂ux/∂x) and D/D t(∂T /∂x) in the Model 1a and Model 1b stress
and heat flux that would stabilize the equations. By linearizing the nonlinear Burnett
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equations and checking the resulting set of homogeneous equations for stability, it has
been shown by Bobylev (1982) that the linearized Burnett equations are unstable when
the local Knudsen number increases above a certain critical value. This technique
was subsequently exploited by Zhong (1991) to develop a set of augmented Burnett
equations which was shown to be stable for a wide range of local Knudsen numbers.
The direct correlation between the unstable nature of the Burnett equations, as
shown by the relatively simple linearized stability analysis of Bobylev, and the small
wavelength instabilities experienced by Fiscko & Chapman (1988), indicated that
stability of the linearized higher-order equations may be a necessary condition to
ensure the stability of the second-order nonlinear hydrodynamic equations. In keeping
with this line of thought, the stability aspects of the linearized BGK-Burnett Model 1
equations were investigated by examining the response of the linearized BGK-Burnett
equations to a periodic perturbation wave (see Zhong 1991). On introducing the non-
dimensional perturbation variables

ρ ′ = (ρ − ρ∞)/ρ∞,

u′
x = (ux − M∞

√
γRT∞)/

√
RT∞,

T ′ = (T − T∞)/T∞,

 (3.1)

in the continuity, momentum and energy equations we obtain the linearized set of
governing equations

∂ρ ′

∂t ′ + M∞
√

γ
∂ρ ′

∂x ′ +
∂u′

x

∂x ′ = 0,

∂u′
x

∂t ′ +
∂ρ ′

∂x ′ + M∞
√

γ
∂u′

x

∂x ′ +
∂T ′

∂x ′ =
1

p∞

∂τxx

∂x ′ ,

∂T ′

∂t ′ + (γ − 1)
∂u′

x

∂x ′ + M∞
√

γ
∂T ′

∂x ′ = − (γ − 1)

p∞
√

RT∞

∂q̇x

∂x ′ ,


(3.2)

where x ′ = x/Lref and t ′ = t/tref = (p∞t)/µ∞ are the non-dimensional length and time
scales, respectively. In arriving at the above set of equations it has been assumed that
the perturbations are small. As a result, products and powers of the derivatives of
flow variables are neglected. We study the response of equations (3.2) to a periodic
perturbation wave given by

[ρ ′, u′
x, T

′]T = [ε1, ε2, ε3]
T eiωx ′

, (3.3)

where εk satisfies the inequality |εk|  1, ∀ k = 1, 2, 3. The characteristic length can
also be written as Lref = µ∞/ρ∞

√
RT∞ = 0.783λ∞ where λ∞ denotes the free-stream

mean free path. The non-dimensional circular frequency, ω = 2πLref/L = 4.92λ∞/

L = 4.92Kn. The linearized governing equations are written in vector-matrix form
as

∂V ′

∂t ′ + M1

∂V ′

∂x ′ =



0

1

p∞

∂τxx

∂x ′

− (γ − 1)

p∞
√

RT∞

∂q̇x

∂x ′

 , (3.4)

where

V ′ = [ρ ′, u′
x, T

′]T (3.5)
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M1 =

M∞
√

γ 1 0

1 M∞
√

γ 1

0 (γ − 1) M∞
√

γ

 . (3.6)

Equation (3.4) forms the basis for the stability analysis of the various forms of the
BGK-Burnett equations that arise from the different closure coefficients of the BGK-
Burnett equations and the different approximations to the material derivatives in the
BGK-Burnett stress and heat flux expressions. We assume the solution of equation
(3.4) to be of the form

V ′ = V̄eiωx ′
eφt ′

, (3.7)

where φ = α + iβ and α and β denote the attenuation and dispersion coefficients,
respectively. The initial conditions for equation (3.4) are given by the vector V ′|t=0 =
V̄eiωx ′

. For the system of equations to be stable we require α � 0 as L decreases or, in
other words, the disturbance must attenuate for increasing local Knudsen numbers.

3.1. Characteristic polynomials and stability trajectories

On substituting equation (3.7) and the Navier–Stokes expressions for the stress and
heat flux in equation (3.4), we obtain the stability equation

∂V ′

∂t ′ + M1

∂V ′

∂x ′ + M2

∂2V ′

∂x ′2 = 0, (3.8)

where

M2 =

0 0 0
0 −(3 − γ ) 0

0 0 − γ

Pr

 . (3.9)

Substituting equation (3.7) in equation (3.8) and imposing the requirement of non-
trivial solutions, reduces the homogeneous equation (3.8) to an eigenvalue problem,
where the condition

|φI + iωM1 − ω2M2| = 0 (3.10)

must be satisfied. On expanding the determinant we obtain the characteristic
polynomial whose roots are plotted on the complex plane for increasing local
Knudsen numbers. For stability, the trajectory of the roots must lie on the left
half of the complex plane. From the stability plot in figure 3(a), it is seen that
the Navier–Stokes equations for a monatomic hard sphere gas are stable for
increasing Knudsen numbers. It must be noted that the linearized forms of the
Model 1a and Model 1b equations are the same; since the differences that arise
by neglecting and retaining, respectively, the material and spatial derivatives of
the collision frequency affect only the nonlinear terms. Consequently, the stability
plots of the Model 1 equations are applicable for the Model 1a as well as Model
1b equations. However, on substituting the exact expression for the second-order
stress and heat flux in equation (3.4) and plotting the roots of the characteristic
polynomial, it can be seen from figure 3(b) that the exact Model 1 equations for
a monatomic hard sphere gas are unstable. The term exact ’ means that the exact
expressions for the material derivatives D/D t(∂ux/∂x) = ∂/∂t(∂ux/∂x) + ux∂

2ux/∂x2

and D/D t(∂T /∂x) = ∂/∂t(∂T /∂x) + ux∂
2T/∂x2 were used in the second-order stress

and heat flux. A similar instability is also observed with the exact Burnett and exact
Woods equations (see Welder et al. 1993). This indicates the need for approximating
the material derivatives D/D t(∂ux/∂x) and D/D t(∂T /∂x) in the second-order fluxes.
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Figure 3. Stability plots of the linearized Navier–Stokes equations and exact BGK-Burnett
Model 1 equations for a monatomic hard sphere gas. The term exact means that the material
derivatives in the second-order fluxes were not approximated. While the Navier–Stokes
equations (a) are stable for increasing Knudsen numbers, the exact BGK-Burnett Model 1
equations (b) are unstable. This indicates the need for approximating the material derivatives.

Exact (no Steady Euler based N–S based N–S based N–S based
approx.) for state for approx. for approx. for approx. for approx. for
D/D t(A) D/D t(A) D/D t(A) D/D t(A) D/D t(A) and D/D t(B) and
D/D t(B) D/D t(B) D/D t(B) D/D t(B) D/D t(B) = 0 D/D t(A) = 0

Model 1 Unstable Unstable Stable Stable Unstable Unstable
Burnett Unstable Stable Unstable Stable Unstable Unstable
Woods Unstable Stable∗ Unstable Stable∗∗ Stable∗ Stable∗∗

Table 6. A comparison of the stability characteristics of the linearized Model 1, Burnett and
Woods equations for a monatomic hard sphere gas. In this table A = ∂ux/∂x and B = ∂T /∂x.
The linearized Model 1 equations are stabilized by Euler and Navier–Stokes approximations
to both the material derivatives, the Burnett equations are stabilized when steady state and
Navier–Stokes approximations are used for both the material derivatives and the Woods
equations are stabilized when the steady state and the Navier–Stokes approximations are used
for the material derivative D/D t (B). For the linearized Woods equations, the single ∗ and
double ∗∗ asterisk superscripts in columns 3 and 6, and columns 5 and 7, respectively, indicate
that the results of the stability analysis in these columns are the same.

Since the second-order stress and heat flux vary on a faster time scale than the
conserved quantities in the state vector Q, it seemed reasonable to assume that they
would have steady-state values on the time scales on which the conserved variables are
evolved. Consequently, the material derivatives were approximated by the steady-state
approximations, i.e. D/D t(∂ux/∂x) ≈ ux∂

2ux/∂x2 and D/D t(∂T /∂x) ≈ ux∂
2T/∂x2. It

was noticed, as shown in table 6, that this approximation stabilizes (see Welder et al.
1993) the linearized Burnett and Woods equations but did not stabilize the linearized
Model 1 equations. Various other approximations to the material derivatives were
considered, as shown in table 6, and it is observed that the only approximations
that make the linearized Model 1 equations stable (see figure 4) are the Euler and
Navier–Stokes approximations to the material derivatives. When both the material
derivatives are neglected, it is seen that the linearized Model 1 equations are unstable
while the linearized Burnett and Woods equations are stable. This is not surprising
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Figure 4. Stability plots of the BGK-Burnett Model 1 equations for a monatomic hard
sphere gas with (a) Euler and (b) Navier–Stokes approximations for the material derivatives
D/D t(∂ux/∂x) and D/D t(∂T /∂x). It can be seen that the Model 1 equations are stable with
these approximations to both the material derivatives.

as it is a special case of the steady-state approximation when the free-stream Mach
number is zero (see Balakrishnan 1999). In order to study the relative influence of
the material derivatives on the stability, one of them was set equal to zero, while the
Navier–Stokes approximation was used for the other. Neither of these approximations
shown in columns 6 and 7 stabilized the Model 1 equations. With regard to the Woods
equations, it must be noted that the absence of the material derivative D/D t (∂ux/∂x)
in the Woods stress makes the approximations in columns 3 and 6 give the same
linearized Woods equations when the free-stream Mach number is equal to zero.
Also, the approximations in columns 5 and 7 make the resulting linearized Woods
equations have the same structure.

4. Shock structure computations
The stable approximations to the material derivatives, as identified by the linearized

stability analysis, do not guarantee that the complete set of nonlinear Model 1a and
Model 1b equations will be entropy-consistent when applied to the shock structure
problem. It would be difficult to establish such a causality, especially when two forms
of the nonlinear Model 1 equations gave the same linearized Model 1 equations.
The stable Euler and Navier–Stokes approximations to the material derivatives are
used in the nonlinear Model 1a and Model 1b equations to solve the shock structure
problem.

4.1. Problem definition, numerical method and boundary conditions

In the shock structure problem, the shock profiles are computed by specifying flow
conditions at the upstream (inflow) and downstream (outflow) boundaries of a linear
control volume that contains the normal shock. The length of the control volume was
chosen to be an integral multiple of the upstream mean free path given by

λ1 =
16µ1

5ρ1

√
2πRT1

, (4.1)

where the subscripts 1 and 2 denote upstream and downstream conditions at j = 1
and j = JMAX, respectively. In these computations the grid points were not clustered
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in the vicinity of the shock. The hypersonic shock structure for argon was computed
using the same flow conditions as Fiscko & Chapman (1988), that is:

T1 = 300 K,

P1 = 1.01325 × 105 Nm−2,

γ = 1.6666,

µ1 = 22.7 × 10−6 Nm−2.

 (4.2)

Along with these upstream flow conditions, the upstream Mach number is also
specified and the downstream Mach number and other flow variables are obtained
using the Rankine–Hugoniot conditions. In order to begin computations, the normal
shock is located at the midpoint of the control volume by specifying upstream
conditions for j � JMID and downstream conditions for j > JMID. The BGK-Burnett
equations were numerically integrated using an explicit hybrid scheme that employs
a peculiar velocity upwinding kinetic scheme (see Rao & Deshpande 1995) for the
Euler flux and central difference discretization for the Navier–Stokes and BGK-
Burnett fluxes. Since the entropy consistency of the BGK-Burnett equations is in
question, a first-order upwind scheme has been used to compute the shock structure.
While it is well known that the first-order scheme is very dissipative, it does yield
monotonic solutions that are wiggle free, thereby eliminating the possibility of entropy
violations from the numerical scheme. Shock structure computations begin with the
solution of the Navier–Stokes equations for j ∈ (1, JMAX) in a control volume that
is expected to contain the shock. The BGK-Burnett (and Burnett) equations were
computed with an initial profile obtained from the converged Navier–Stokes solution.
Since the inflow and outflow boundary conditions were specified, using the Rankine–
Hugoniot conditions, there was no need to specify any other boundary condition,
provided the control volume was large enough to contain the shock. In order to
ascertain that there was no need for additional boundary conditions, the problem was
solved by treating the outflow boundary as a subsonic boundary. This means that
two of the characteristics are outgoing and one of them is incoming. The boundary
conditions were applied by extrapolating the velocity and density from j = JMAX−1
to j = JMAX and specifying the downstream pressure at j = JMAX. These solutions
were identical to the solutions obtained without explicitly specifying the outflow
boundary conditions. In addition, the first-, second- and third-order derivatives were
negligibly small at the boundaries of the control volume.

4.2. BGK-Burnett Model 1a and Model 1b shock structure

The shock structure was computed with the Burnett and Model 1a equations in a
control volume of length 1000×λ1. In order to test for instabilities, the shock structure
was computed by increasing the number of grid points until the equations became
unsolvable. Increasing the number of grid points or decreasing the grid fineness ratio,
defined as �x/λ1, increases the local Knudsen number. The material derivatives in
the Model 1a equations were approximated by spatial derivatives from the Euler
equations as these approximations stabilized the linearized Model 1 equations. In the
Burnett equations, the ∂2ρ/∂x2 term was dropped as suggested by Fiscko & Chapman
(1988).

On very coarse grids, it was observed (as expected) that the solutions of the Navier–
Stokes, Burnett and Model 1a equations were almost indistinguishable. However, as
the grids were made finer, a negative entropy spike began to develop in the Burnett
solutions just ahead of the shock. As shown in figures 5(a) and 5(b), the converged
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Figure 5. BGK-Burnett Model 1a and Burnett specific entropy variation across a Mach 20
normal shock in a monatomic hard sphere gas for (a) �x/λ1 = 8.0, (b) �x/λ1 = 4.0. The
material derivatives D/D t(∂ux/∂x) and D/D t (∂T /∂x) were approximated using the Euler
equations. The Burnett equations failed at grid fineness ratios below the critical limit of
�x/λ1 = 4.0. The critical grid fineness ratio of the Model 1a equations was lower than 4.0.

Burnett solutions for M1 = 20 show a negative entropy spike just ahead of the shock.
It must be noted, though, that the Burnett solutions did not break down at these grid
fineness ratios. Increasing the number of grid points, increases the magnitude of the
negative entropy spike until the temperature ahead of the shock becomes negative
and the solution of the equations breaks down beyond this critical (limiting) grid
fineness ratio. For the Burnett equations, the critical grid fineness ratio for M1 = 20 is
�x/λ1 = 4.0 and is lower for lower upstream Mach numbers. Although the Model 1a
equations did not give rise to the negative entropy spike at these grid fineness ratios,
it was observed that they too became unsolvable at grid fineness ratios that were
slightly lower than the critical limit of �x/λ1 at which the Burnett equations became
unsolvable. As a result, the performance of the Model 1a equations was only a
marginal improvement on the Burnett equations. An increase in the number of grid
points also necessitated lower CFL values until it became impossible to compute the
Model 1a equations for grid fineness ratios less than unity. This instability was also
observed when the upstream Mach number was reduced and the number of grid
points was increased. In order to explain the instabilities experienced with increasing
upstream Mach number and reducing grid fineness ratios, consider the definition of
the cell Knudsen number

Kn�x =
λ

�x
= 1.277M

√
γ

Re�x

, (4.3)

where Re�x is the cell Reynolds number. The cell Knudsen number is also inversely
proportional to the local fineness ratio (�x/λ), i.e. Kn�x ∝ λ/�x. An increase in
the upstream Mach number and a corresponding lowering in the grid size causes an
increase in the cell Knudsen number. Since the local Knudsen number, on fine grids,
first, assumes values greater than unity on the upstream side of the shock, the Burnett
and Model 1a equations fail in these regions.

With the inclusion of Dν/D t and ∂ν/∂x in the stress and heat flux expressions of the
Model 1b equations, computations were possible on grids that were finer than the grids
used for Model 1a and Burnett equations. The material derivatives in the Model 1b
equations were expressed using the Euler approximations and the Mach 5 normal



Entropy consistency in second-order hydrodynamic equations 225

Figure 6. Comparison of the Model 1b and Navier–Stokes solutions for a Mach 5 normal
shock in a monatomic hard sphere gas. These solutions were obtained on a mesh of critical
fineness ratio �/λ= 0.4 with Euler approximations to the material derivatives D/D t(∂ux/∂x)
and D/D t(∂T /∂x). (a) shows the variations of the normalized density and temperature and
(b) shows the variations of µ̆ (denoted as µ(p)) and µ(T ) across the shock. Note the large
variation in µ(p) as compared to the much smaller variation in µ(T ) across the shock.

shock solutions, shown in figures 6(a) and 6(b), were obtained on a control volume
that was 100λ1 wide with a grid fineness ratio �x/λ1 = 0.4. However, shock solutions
were not obtainable on even finer grids, even with the Model 1b equations. It is
shown in § 6 that despite Model 1b equations giving converged solutions that indicate
a thicker shock than the Navier–Stokes solution, they are not entropy-consistent and
consequently fail at grid fineness ratios lower than the critical ratio �x/λ1 = 0.4. For
the Model 1a and Model 1b equations it was seen that using the Navier–Stokes
approximations to the material derivatives did not improve the behaviour of the
equations.

4.3. The fictitious viscosity in the Model 1a equations

A detailed examination of the Model 1a and Model 1b equations reveals that ignoring
the contributions from Dν/D t and ∂ν/∂x leads to differences in the viscosity in the
first- and second-order fluxes in the Model 1a equations. In order to understand the
cause of this difference, consider the Model 1a and Model 1b stress and heat flux
given by equations (2.49), (2.50), (2.53) and (2.54). The inclusion of the Dν/D t and
∂ν/∂x results in differences in the terms 1a, . . . ,4a in equations (2.49) and (2.50) and
the corresponding terms 1b, . . . ,4b in equations (2.53) and (2.54). Rewriting the terms
1a, . . . ,4a as

1
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Dµ̆

D t
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(
1

ρ

Dρ

D t
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1

T

DT

D t
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,

1
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∂x
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(
1

ρ

∂ρ

∂x
+

1

T

∂T

∂x

)
in equations (2.49) and (2.50), we define a fictitious viscosity

µ̆ = ρT , (4.4)

which is proportional to the pressure. Using this definition, we rewrite the stress and
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heat flux terms in equations (2.49) and (2.50) as
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and
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. (4.6)

Equations (2.53) and (2.54) may be obtained from the above equations by substituting
µ in place of µ̆. From equation (4.4), we notice that µ̆ varies with pressure, while the
constitutive relation for µ in the Navier–Stokes equations varies with temperature
(see equation (2.55)). Figure 6(b) shows the large rise in µ̆ (denoted by µ(p) in the
figure) and the much smaller rise in µ(T ) across the normal shock. This unphysical
difference between µ̆(p), which is embedded in the Model 1a flux, and µ(T ), the
viscosity in the Navier–Stokes flux creates an abrupt jump in the viscosity between
the first- and second-order fluxes that causes the BGK-Burnett Model 1a equations to
become stiff as the grids are refined and the upstream Mach number is increased. It is
because of this embedded fictitious viscosity that computations of the two-dimensional
Model 1a equations for hypersonic flow about a blunt body (see Yun, Agarwal &
Balakrishnan 1997) were not possible for free-stream Knudsen numbers greater than
0.01. However, in the BGK-Burnett Model 1b equations, the definition of viscosity
is consistent throughout the first- and second-order fluxes and leads to an improved
set of equations. To understand better the rationale for neglecting contributions from
Dν/D t and ∂ν/∂x, consider figure 7. It is seen that for an M1 = 1.2 normal shock, the
increase in collision frequency across the shock is smaller than the corresponding rise
across the M1 = 5 shock. Also, the difference between µ̆(p) and µ(T ) downstream of
the shock increases with shock strength as shown by the viscosity variation across the
M1 = 1.2 and M1 = 5 normal shocks in figure 7(b). It is conjectured that the problems
associated with the Burnett equations are, in part, a result of this viscous imbalance.
This can be seen from the fact that stress expressions in equations (2.51) and (2.58),
and the heat flux expressions in equations (2.52) and (2.59) have identical derivatives.
The inclusion of the material derivative of collision frequency in the formulation
of the second-order flux, therefore, marks an important departure from all other
formulations of second-order stress and heat flux approximations.

5. Boltzmann’s H-theorem
The linearized stability analysis and shock structure computations identified stable

approximations to the material derivatives and indicated the need for the Dν/D t

and ∂ν/∂x terms in the Model 1b stress and heat flux expressions. In order to assess
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Figure 7. Collision frequency ν and molecular viscosity µ(p) and µ(T ) variations across a
Mach 1.2 and Mach 5 normal shock. (a) ν variation, (b) µ(p) and µ(T ) variations. An increase
in the upstream Mach number makes the difference between µ̆ and µ large.

the entropy consistency of second-order hydrodynamic equations it is required to
calculate the irreversible entropy produced by the equations. The classical equation
for the change in entropy, i.e. �s = cv log(T2/T1)−R log(ρ2/ρ1), used in § 4 to correlate
the formation of the negative entropy spike with the resulting instability (see figure 5),
follows from the Gibbs equation (5.6) that is applicable only to systems in
thermodynamic equilibrium. Since the BGK-Burnett equations model a gas in a state
of collisional and translational non-equilibrium, it is required that the expression
for the entropy includes second-order departures from equilibrium. Boltzmann’s H-
theorem generalizes the concept of entropy by making explicit the manner in which
a system evolves from an arbitrary initial state. In its original unrestricted form (see
ter Haar 1956), the H-theorem states that any system will tend towards equilibrium
if equilibrium conditions did not exist to begin with. For a spatially inhomogeneous
gas, Grad (see Haviland 1962) has shown that the inequality

∂H

∂t
+

∂Hv

∂x
� 0 (5.1)

must be satisfied when the gas approaches equilibrium. The definition of the H

function and Hv in (5.1) is modified to include contributions from the non-translational
modes of energy (see Deshpande 1986) and is given by

H =

∫
�+

∫
�

(
f loge f +

5 − 3γ

2(γ − 1)
f loge β

)
dvx dI, (5.2)

Hv =

∫
�+

∫
�

vx

(
f loge f +

5 − 3γ

2(γ − 1)
f loge β

)
dvx dI. (5.3)

For monatomic gases, γ = 5/3, the integrand in the expressions for H and Hv reduce
to the standard expression f loge f . By taking moments of the Boltzmann equation
with the linear combination of collision invariants〈

−R

(
1 + loge f − 2

(5 − 3γ )

(3 − γ )
βI

)
,
∂f

∂t
+ vx

∂f

∂x

〉
=

〈
−R

(
1 + loge f − 2

(5 − 3γ )

(3 − γ )
βI

)
, ν
(
f (0) − f

)〉
, (5.4)
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equation (5.1) can, after simplification, be recast as an entropy balance equation

ρ
Ds

D t
+ ∇ · J = σ̇ , (5.5)

where s = −RH is the specific entropy, J is the entropy flux and σ̇ denotes the rate
of production of irreversible entropy. Equation (5.5) is similar to the Gibbs entropy
balance equation from equilibrium thermodynamics

ρ
Dseq

D t
+

∂

∂x

(
q̇x

T

)
=

1

T
τxx

(
∂ux

∂x

)
− q̇x

T 2

(
∂T

∂x

)
� 0 (5.6)

ρ
Dseq

D t
+ ∇ · J eq = σ̇ eq (5.7)

where J eq = q̇/T denotes the entropy flux and the source term

σ̇ eq =
1

T
τxx

(
∂ux

∂x

)
− q̇x

T 2

(
∂T

∂x

)
(5.8)

denotes the rate of production of irreversible entropy, which must be either positive
or zero in accordance with the second-law of thermodynamics. For a Maxwellian
distribution function it can shown that �s(0) = �seq = cv log(T2/T1)−R log(ρ2/ρ1) and
the irreversible entropy produced equals zero (σ̇ (0) = 0). It can be shown (see Comeaux
1995; Balakrishnan 1999) that for monatomic hard sphere gases, the expressions for
σ̇ and σ̇ eq are identical only up to first-order departures from equilibrium. Therefore,
the entropy consistency of second-order distribution functions is verified by evaluating

Ds

D t
+ ∇ · J =

〈
−Rν

(
f (0) − f

) [
1 + loge f − 2(5 − 3γ )

(3 − γ )
βI

]〉
(5.9)

and checking if the source term on the right-hand side is greater than zero. From
equation (5.9), the production of irreversible entropy for second-order departures from
equilibrium is given by (see Balakrishnan (1999) for details regarding this derivation)

σ̇ = σ̇ (1) + σ̇ (2)

= µR

[
E

(1)
1

1

T 2

(
∂T

∂x

)2
+ E

(1)
2

1

RT
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∂ux
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)2]
+

µ2R

p2
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E

(2)
1 R

ρ
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∂x

D

D t

(
∂T
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∂ux
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(
∂T

∂x

)2
+ E

(2)
3 ρ

(
∂ux
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)3
+ E

(2)
4 ρ

(
∂ux

∂x

)
D

D t

(
∂ux

∂x
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+ E
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5 Rρ
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∂x

∂2ux
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+ E

(2)
6 Rρ

∂ux

∂x

∂2T

∂x2
+ E

(2)
7 R

∂ρ

∂x

∂ux

∂x

∂T

∂x

]
, (5.10)

where the coefficients E
(i)
j are given in tables 7 and 8. In equation (5.10), the irreversible

entropy generated by the first-order terms in the distribution function is given by
the terms of order O(µ) that are denoted by σ̇ (1). The irreversible entropy generated
by the second-order terms in the distribution function is given by the O(µ2) terms
denoted by σ̇ (2). The material derivatives present in σ̇ (2) and the material derivatives in
the Model 1 stress and heat flux are the same. When the Euler equations are used to
approximate the material derivatives, terms up to O(µ2) are present in the expression
for σ̇ . When the same material derivatives are approximated using the Navier–Stokes
equations there are additional terms that are of O(µ3).
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E
(1)
1 = ϕ1, E

(1)
2 = ϕ2, E(2)

1 = −2ϕ1,

E(2)
2 = 2(ω(γ − 1) − 1)ϕ1 − 2(1 + ω)ϕ3 + 2(ω − 1)ϕ4 + 2ϕ5 + 2ϕ6 + ϕ7,

E(2)
3 = 2(ω(γ − 1) − 1)ϕ2 + ϕ8, E(2)

4 = −2ϕ2,

E(2)
5 = −2ϕ3, E(2)

6 = 2ϕ4, E(2)
7 = 2ϕ5

Table 7. The E
(i)
j coefficients in the non-equilibrium formulation of the first- and second-order

irreversible entropy production terms in the BGK-Burnett equations. In order to distinguish
the second-order entropy coefficients from the first-order coefficients, the former is shown using
boldface characters.

ϕ1 = 5
2

ϕ2 = 1
2
(3γ 2 − 10γ + 11)

ϕ3 = 6
(

1
4
θ4 + θ5

)
l1 = 1

4
(3γ − 5)(2θ1 + 2θ2 + 3θ3)

l2 = 1
4
(3 − γ )(6θ1 + 6θ2 + 15θ3) l3 = 1

2
(γ − 1)(2θ1 + 4θ2 + 3θ3)

ϕ4 = l1 + l2 − l3 ϕ5 = 1
2
(11 − 5γ )

l4 = 3
2
θ1 + 2θ2 + 9

2
θ3 l5 = 15

8
θ4 + 5

4
θ5 + 5

4
θ6

l6 = 3
8
(3 − γ )(2θ1 + 2θ2 + 5θ3) l7 = 1

4
(γ − 1)(2θ1 + 4θ2 + 3θ3)

ϕ6 = l4 − l5 + l6 − l7 ϕ7 = 3
2
(37 − 15γ )

ϕ8 = −(3γ 3 − 15γ 2 + 33γ − 29)

Table 8. Coefficients in the first- and second-order non-equilibrium irreversible entropy
production terms in the BGK-Burnett equations.

5.1. Assessing the entropy consistency of the Model 1b equations

It can be seen that σ̇ (1) is always positive and this leads to the assertion that
the Navier–Stokes equations are entropy-consistent. However, the large number of
derivatives that are present in σ̇ (2) necessitates a computational evaluation of σ̇ to
determine if the BGK-Burnett equations satisfy the second-law of thermodynamics.

5.1.1. M1 = 1.2 normal shock

To demonstrate the calculation of σ̇ , the Model 1b equations were solved for a
weak normal shock with upstream Mach number M1 = 1.2. This computation was
based on the flow conditions given in (4.2). The computations were carried out on
a control volume of length 100λ1. The material derivatives in the Model 1b stress
and heat flux were represented by the two sets of approximations. In the first set,
the material derivatives D/D t (∂ux/∂x) and D/D t (∂T /∂x) were expressed using the
stable Euler approximations. The converged Model 1b and Navier–Stokes solutions
on a grid of fineness ratio �x/λ1 = 0.2 are shown in figure 8(a). The converged
Model 1b solution was used to compute the derivatives in entropy production term
in equation (5.10). Since the Euler approximations were used to express the material
derivatives, the same approximations were used to compute the derivatives in equation
(5.10). The entropy production in the control volume is shown in figures 8(a). Even
at this low upstream Mach number, it is seen that σ̇ (2) is negative near the upstream
region of the shock. However, the large positive value of σ̇ (1) makes the total value
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Figure 8. Entropy production by the BGK-Burnett Model 1b equations for a M1 = 1.2 normal
shock in a monatomic hard sphere gas. The grid fineness ratio used in this computation was
�x/λ1 = 0.2. In (a) the stable Euler approximations were used for the material derivatives
D/D t (∂ux/∂x) and D/D t (∂T /∂x). In (b) the unstable Navier–Stokes approximation was used
for the material derivative D/D t (∂ux/∂x) and D/D t (∂T /∂x) = 0. Both sets of approximations
gave converged solutions that are also entropy consistent.

of σ̇ positive throughout the computational domain and the solution is, therefore,
entropy-consistent.

In the second set, the material derivative D/D t (∂ux/∂x) was expressed using the
Navier–Stokes approximation and the material derivative D/D t (∂T /∂x) = 0. From
table 6, we see that this choice of approximating the material derivatives is unstable.
However, in this case too, the Model 1b equations gave a converged solution on
a grid of fineness ratio �x/λ1 = 0.2 shown in figure 8(b). Once again, with the
same material derivative approximations used to evolve the equations, the converged
Model 1b solution was used to compute the derivatives in entropy production term
in equation (5.10). It is seen that this solution also generates a positive entropy
throughout the control volume. For these computations an initial profile specified
using the Rankine–Hugoniot relations and converged Navier–Stokes solution gave
identical results.

5.1.2. M1 = 5 normal shock

In § 4, it was mentioned that the solution of the Model 1b equations with the Euler
approximations failed to converge for grid fineness ratios below the critical value of
�x/λ1 = 0.4 (see figure 6a). In order to test the entropy consistency of the equations
for an M1 = 5 shock, the converged solution at �x/λ1 = 0.4 was used to compute the
irreversible entropy produced by the equations. The plot of the irreversible entropy
in figure 9(a) shows that the σ̇ (1) terms in equation (5.10) are positive throughout
the domain. However, the σ̇ (2) terms are negative in much of the shock and further,
the combined entropy σ̇ (1) + σ̇ (1) is negative. An important point that should be
emphasized is that despite the fact that the Model 1b equations generated negative
irreversible entropy at this grid fineness ratio, the temperature of the gas did not
become negative yet for the numerical solution to fail. Hence, it was possible to
obtain converged solutions at �x/λ1 = 0.4. However, lowering the grid fineness ratio
below the critical value causes the temperature to become negative and the equations
fail.
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Figure 9. Variation of σ̇ (1), σ̇ (2) and σ̇ (1) + σ̇ (2) for the Model 1b equations. The flow
conditions are M1 = 5 and �x/λ1 = 0.4. In (a) the Navier–Stokes approximations were used
for D/D t (∂ux/∂x) and D/D t (∂T /∂x). The variations, based on a converged solution, show
that the equations are entropy inconsistent at this critical grid fineness ratio. In (b) the
Navier–Stokes approximation was used for D/D t (∂ux/∂x) and D/D t (∂T /∂x) = 0. The Model
1b equations did not yield a converged solution even on coarse grids. The variations in this
case were based on an intermediate profile just before the equations failed on a �x/λ1 = 0.4
grid.

In figure 9(b), the Navier–Stokes approximation was used for D/D t (∂ux/∂x) and
D/D t (∂T /∂x) = 0. This approximation was shown to be unstable (see table 6) and
failed to produce a converged solution for the M1 = 5 normal shock, even on coarse
grids. An examination of the intermediate shock profile, obtained just before the
equations broke down, reveals that the irreversible entropy produced is negative for
much of the region of the shock. For these approximations, the temperature of the
gas becomes negative as the solution evolves on even coarse grids. Hence, it was not
possible to obtain converged solutions on any grid.

6. Entropy-consistent approximations to the material derivatives
The formulation of entropy-consistent BGK-Burnett equations requires that the

converged BGK-Burnett solutions generate a positive σ̇ . However, the BGK-
Burnett equations must be entropy-consistent to yield a converged solution. These
contradictory requirements present a paradox. Further, the analysis of the Model 1b
equations has been based on the identification of stable approximations to the
material derivatives followed by computation of the shock structure with the Model
1b equations in which the material derivatives were represented by the stable
approximations. Since the closure coefficients are non-unique, the application of
the two steps in the identification methodology (see figure 2) to each set of closure
coefficients is a very time-consuming way of identifying BGK-Burnett equations that
are entropy-consistent. From the entropy analysis of the M1 = 1.2 and M1 = 5 normal
shock computations, we make the following observations:

(i) For weak shocks, the stable as well as unstable approximations to the material
derivative yields entropy-consistent solutions on very fine grids.

(ii) For medium to high upstream Mach numbers, the stable approximations to
the material derivatives made the Model 1b equations entropy inconsistent below a
critical grid fineness ratio.
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(iii) For strong shocks, the Model 1b equations with unstable approximations to the
material derivatives broke down on even relatively coarse grids. Further, an analysis
of the intermediate shock profile before the equations broke down revealed that the
profile was entropy inconsistent.

(iv) While the M1 = 1.2 Model 1b solutions could be obtained using the Rankine–
Hugoniot relations to specify the initial conditions, the solution of the M1 = 5 shock
required a converged Navier–Stokes solution as the initial profile.

Since the BGK-Burnett solution may be viewed as a second-order relaxation of
the Navier–Stokes solution, it is conjectured that the Navier–Stokes solution would
have developed as an intermediate profile of the BGK-Burnett equations had the
latter been started on an initial profile specified by the Rankine–Hugoniot relations.
Based on these observations we propose the entropy-consistent relaxation technique
to identify entropy-consistent approximations to the material derivatives.

Entropy-Consistent Relaxation Technique (ECRT). The central idea behind this
technique is that by considering the Navier–Stokes solution to be an entropy-
consistent intermediate profile of the BGK-Burnett solution, it is possible to identify
approximations to the material derivatives in τB

xx and q̇B
x which will preserve the

positivity of the irreversible entropy as the BGK-Burnett solution evolves.
The ECRT requires that the BGK-Burnett solutions do not violate the second-law

of thermodynamics at any stage during the evolution process.

6.1. Applying the entropy-consistent relaxation technique to the Model 1b equations

The entropy-consistent relaxation technique is applied by computing σ̇ from a
converged Navier–Stokes solution. The material derivatives in equation (5.10) are
expressed by using the stable approximations that were identified by the linearized
stability analysis. The approximations to the material derivatives that generate positive
σ̇ are considered to be candidate entropy-consistent approximations to the material
derivatives in the second-order stress and heat flux expressions. The BGK-Burnett
Model 1b equations with these candidate approximations are computed from the
initial profile obtained from the converged Navier–Stokes solution. If the converged
Model 1b solution is entropy-consistent (positive σ̇ ) then these approximations are
used to define the constitutive relations for the second-order fluxes in the entropy-
consistent BGK-Burnett equations.

6.1.1. M1 = 1.2 normal shock

The ECRT, described above, was applied to the solution of the M1 = 1.2 shock
structure with the Model 1b equations. The approximations to the material derivatives
that were stable to small wavelength perturbations were used to compute σ̇ from
a converged Navier–Stokes solution of the M1 = 1.2 shock structure. To illustrate
this, we consider the stable Navier–Stokes approximations to the material derivatives.
From figure 10, we see that the irreversible entropy generated from the converged
Navier–Stokes solution is positive throughout the computational domain. Hence,
the stable Navier–Stokes approximation to the material derivatives in the Model 1b
equations is used to evolve the shock structure. The converged Model 1b solution
is used to compute σ̇ which is seen in figure 10(b) to be positive throughout the
region of the shock. Similar results were obtained when the ECRT was applied to
the stable Euler approximations to the material derivatives. Since the Navier–Stokes
approximation adds a third-order term to the expression for σ̇ and the Model 1b
fluxes, the solutions of the Model 1b equations with the Euler approximations in
figure 8(a) and the Navier–Stokes approximations in figure 10(b) are almost identical.
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Figure 10. Variation of σ̇ (1), σ̇ (2) and σ̇ (1) + σ̇ (2) for the Navier–Stokes and Model 1b equations
across a Mach 1.2 normal shock in a monatomic hard sphere on a grid of �x/λ1 = 0.2. The
stable Navier–Stokes approximations were used to express the material derivatives D/D t
(∂ux/∂x) and D/D t (∂T /∂x). (a) σ̇ variation based on the converged Navier–Stokes solution
that was the initial solution for the Model 1b computations, (b) σ̇ variation based on the
converged Model 1b computations. For this Mach number and grid fineness ratio the Model
1b equations are entropy-consistent.

Also, from figure 10, we note that for this weak shock, the converged Navier–Stokes
and Model 1b solutions are almost identical.

6.1.2. M1 = 5 normal shock

The ECRT was applied to the solution of the Mach 5 shock structure with
the Model 1b equations. The approximations to the material derivatives that were
stable to small wavelength perturbations were used to compute σ̇ from a converged
Navier–Stokes solution of the M1 = 5 shock structure. It was noticed that the stable
Navier–Stokes approximations to the material derivatives generated negative σ̇ in the
region of the shock when σ̇ was computed based on converged Navier–Stokes and
Model 1b solutions for the critical grid fineness ratio �x/λ1 = 0.4. Similar results were
obtained using the Euler approximations to the material derivatives as in figure 9(a).
Also, by using the unstable Navier–Stokes approximation for D/D t(∂ux/∂x) and
setting D/D t(∂T /∂x) = 0 in equation (5.10), we see, from figure 12(b), that σ̇ generated
by the converged Navier–Stokes solution is negative. The evolution of the Model 1b
equations with this unstable and entropy inconsistent approximations breaks down
on even coarse grids. The variations in figures 10 and 11 highlight an important point,
namely that, material derivative approximations that generate negative irreversible
entropy based on the converged Navier–Stokes solution do not produce entropy-
consistent BGK-Burnett solutions.

Based on this observation, we narrow our search for entropy-consistent
approximations to the material derivatives by considering only stable approximations
that generate positive σ̇ from an initial profile based on the converged Navier–
Stokes solution. Since the Model 1b equations are found to violate the second-law
of thermodynamics, we apply the ECRT to the Model 2 equations that are derived
from another set of closure coefficients.
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Figure 11. Variation of σ̇ (1), σ̇ (2) and σ̇ (1) + σ̇ (2) for the Model 1b equations. The flow
conditions are M1 = 5 and �x/λ1 = 0.4. The Navier–Stokes approximations were used for D/D t
(∂ux/∂x) and D/D t (∂T /∂x). (a) The variations based on the converged Navier–Stokes solu-
tion. (b) The variations based on the converged Model 1b solution. For this Mach number
and grid fineness ratio the Navier–Stokes approximations are entropy inconsistent. For grid
fineness ratios smaller than 0.4, the Model 1b equations failed to give a converged solution.

Figure 12. Variation of σ̇ (1), σ̇ (2) and σ̇ (1) + σ̇ (2) for the Model 1b equations. The flow
conditions are M1 = 5 and �x/λ1 = 0.4. The Navier–Stokes approximation was used for D/D t
(∂ux/∂x) and D/D t (∂T /∂x) = 0. (a) The variations based on the converged Navier–Stokes
solution. (b) The variations based on a solution of the Model 1b equations just before the
equations broke down.

7. Model 2: an improved set of BGK-Burnett equations
7.1. Formulation of the Model 2 equations

The derivation of the BGK-Burnett equation makes it clear that the entropy consist-
ency of the equations depends on the closure coefficients and the approximations to
the material derivatives. The previous sections identified the fictitious viscosity that is
created when Dν/D t and ∂ν/∂x are neglected and explored the entropy consistency
of the Model 1b equations by computing σ̇ for various approximations to the material
derivatives. The use of the ECRT to identify stable approximations that were also
entropy-consistent did not yield an entropy-consistent set of Model 1b equations
for shock structure computations for upstream Mach numbers M1 = 5 and higher.
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ω1 =
97γ − 135

4(9 − 7γ )
ω2 = − 23γ − 27

2(9 − 7γ )
ω̆1 =

17γ − 27

2(9 − 7γ )

θ1 = 5
2

+ ω1 θ2 = ω2 − 1 θ3 = −(1 + ω̆1)

θ4 = (3 − γ ) + ω3 θ5 = −(γ − 1) − ω3 θ6 =
(3γ − 5)

2
+ ω3

Table 9. Closure coefficients of the Model 2 second-order distribution function (7.1). These
closure coefficients are functions of the specific heat ratio γ of the gas. Since the closure

function B̃(2)(I, Cx) of the Model 2 equations is the same as that of the Model 1 equations,
the functional form of the closure coefficient ω3 is the same as that given in table 1.

Therefore, it was conjectured that the requirement of moment closure alone may not
give rise to an entropy-consistent set of equations and that additional constraints
may be required to evaluate the closure coefficients. In the formulation of the
Model 2 equations, an additional constraint was imposed by requiring that the
stability trajectories of the linearized BGK-Burnett and Navier–Stokes equations
look similar. On comparing the characteristic polynomials of the linearized BGK-
Burnett and Navier–Stokes equations and exploring the relative influence of the

various coefficients on the stability, it was noticed that the closure function B̃(2)(I, Cx)
has a less pronounced effect on the stability of the linearized equations than the

closure function B̃(1)(I, Cx). The modified closure function B̃(1)(I, Cx) takes the form

B̃(1)(I, Cx) =
1

β

(
5
2

+ ω1

)
C2

x +
1

β

I

I0

(ω2 − 1) C2
x − (1 + ω̆1) C4

x , (7.1)

where closure coefficients that satisfy the moment closure relation (2.22) are given in
table 9. The second-order distribution function is given by

f = f (0) + ξf (1) − ξ

ν

[
∂

∂t

(
f (1)
)

+
∂

∂x

(
uxf

(1)
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∂
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(
f (0)φ̃(1)
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, (7.2)

where

φ̃(1) = − 1

ξν

[
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βI0
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4
x ,

B̃(2)(I, Cx) = θ4βC3
x + θ5

I

I0

Cx + θ6Cx,


(7.3)

Since equation (7.3) is identical to equation (2.43), the second-order flux in Model 2
is given by the generic expressions (2.47) and (2.48). In the formulation of Model 2b
flux, the material and spatial derivatives of the collision frequency were retained.
Hence, the derivatives in the stress and heat flux terms of the Model 2b equations
are identical to the derivatives in the Model 1b flux. Also, the functional form
of the expressions for the stress and heat flux coefficients are identical to that of
the Model 1 equations given in table 2. The numerical values are quite different,
though, as the closure coefficients for the Model 2 equations are quite different. A
comparison of the Model 2 stress and heat flux coefficients with the corresponding
coefficients in the Model 1b, Burnett and Woods equations is shown in table 10. Unlike
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BGK-Burnett BGK-Burnett
τ (II )
xx and q̇ (II )

x Model 1b Model 2b Burnett Woods

A1 0.889 0.889 2.6667 4.444
A2 1.333 1.333 1.3333 0
A3 0 0 0.0 0
A4 −4.5 2.25 2.0 2.0
A5 −2.25 1.125 1.0 1.0
B1 −2.833 3.9167 22.125 33.5
B2 2.5 2.5 5.625 11.25
B3 0.889 0.889 2.0 0
B4 −1.333 −1.333 −2.0 0

Table 10. A comparison of the Model 1b, Model 2b, Burnett and Woods stress and heat flux
coefficients for a monatomic hard sphere gas, i.e. γ =1.6666 and ω = 0.5. Boldface characters
highlight the change in the sign of the A4, A5 and B1 coefficients in the Model 1b and Model 2b
equations. Also, the non-zero Model 2b, Burnett and Woods stress and heat flux coefficients
have the same sign.

Exact (no Steady Euler based N–S based N–S based N–S based
approx.) for state for approx. for approx. for approx. for approx. for
D/D t(A) D/D t(A) D/D t(A) D/D t(A) D/D t(A) and D/D t(B) and
D/D t(B) D/D t(B) D/D t(B) D/D t(B) D/D t(B) = 0 D/D t(A) = 0

Model 2 Unstable Stable Unstable Stable Stable Unstable
Woods Unstable Stable∗ Unstable Stable∗∗ Stable∗ Stable∗∗

Model 1 Unstable Unstable Stable Stable Unstable Unstable

Table 11. A comparison of the stability characteristics of the linearized Model 2 Woods and
Model 1 equations for a monatomic hard sphere gas. In this table, A = ∂ux/∂x and B = ∂T /∂x.
The linearized Model 2 equations are stabilized by the Navier–Stokes and steady-state
approximations to both the material derivatives. In addition, the Navier–Stokes approximation
for D/D t(A) and setting D/D t(B) = 0 stabilizes the linearized Model 2 equations. These
approximations also make the Model 2b equations entropy consistent as indicated by the
boldface characters. For an explanation of the ∗ and ∗∗ asterisk marks for the approximations
see table 6.

the Model 1b coefficients, the non-zero Model 2b, Burnett and Woods coefficients
have the same sign. The linearized stability analysis of the Model 2 equations was
carried out as described in § 3 and the stability of the Model 1 and Model 2
equations is compared in table 11. It is noted that unlike the Model 1 equations,
the Euler approximations to the material derivatives do not stabilize the linearized
Model 2 equations. However, it is noticed that the Navier–Stokes and steady-state
approximations to both the material derivatives stabilize the linearized Model 2
equations. Also, the Navier–Stokes approximation to D/D t (∂ux/∂x) and setting the
material derivative D/D t (∂T /∂x) = 0 stabilizes the linearized Model 2 equations. It
is seen that the stability characteristics of the linearized Model 2 and Woods equations
are quite similar, save the approximations in the last column in table 11.

7.2. Applying the entropy-consistent relaxation technique to the Model 2b equations

The entropy-consistent relaxation technique was applied to the Model 2b equations
with the same flow conditions as used earlier (see § § 4.1 and 6.1). The stable
approximations, shown in table 11 were used to evaluate σ̇ in equation (5.10). Figures
13 and 14 show the variations of σ̇ for two such approximations for the M1 = 5
shock structure problem on a grid of fineness ratio �x/λ1 = 0.1. In figure 13, the
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Figure 13. Variation of σ̇ (1), σ̇ (2) and σ̇ (1) + σ̇ (2) for the Model 2b equations for a Mach 5
normal shock, �x/λ1 = 0.1. The Navier–Stokes equations were used to approximate
D/D t (∂ux/∂x) and D/D t (∂T /∂x). (a) The variations based on a converged Navier–Stokes.
(b) The same variations based on a Model 2b solution just before the Model 2b equations
broke down at this grid fineness ratio.

Figure 14. Variation of σ̇ (1), σ̇ (2) and σ̇ (1) + σ̇ (2) for the Model 2b equations for a Mach 5
normal shock, �x/λ1 = 0.1. The Navier–Stokes equations were used to approximate
D/D t (∂ux/∂x) and D/D t (∂T /∂x) = 0. (a) The variations based on a converged Navier–
Stokes. (b) The same variations based on a Model 2b converged solution. These variations
show that the equations are entropy-consistent.

Navier–Stokes approximations were used for both the material derivatives. Starting
with an initial shock profile obtained from a converged Navier–Stokes solution, it
is seen from figure 13(a) that this approximation generates a net negative σ̇ in
the region of the shock. Consequently, when these approximations were used to
approximate the material derivatives in the Model 2b flux, it is seen from figure
13(b) that the σ̇ distribution continues to be negative in the region of the shock
and the equations break down. However, by using the Navier–Stokes approximation
for D/D t (∂ux/∂x) and setting D/D t (∂T /∂x) = 0, it is seen from figure 14 that the
σ̇ variations are positive for the initial shock profile obtained from a converged
Navier–Stokes solution and for the converged Model 2b solutions. In figure 14, it
is important to note the slight positive peak in σ̇ (2) in the upstream region of the
shock. This peak was not present in the σ̇ (2) variations obtained from the Model 1b
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Figure 15. (a, b) Comparisons of the variations of the first-order heat flux q̇v
x , the second-order

terms q̇B
x and the total heat flux q̇v

x + q̇B
x for the Model 2b equations and DSMC computations

for a Mach 5 normal shock in argon gas modelled as a hard sphere gas. (a) The heat flux
variations based on a converged Navier–Stokes profile. (b) The heat flux variations based
on the converged Model 2b profile. In the second-order flux, the Navier–Stokes equations
were used to approximate D/D t (∂ux/∂x) and D/D t (∂T /∂x) = 0. (c–e) The variations of the
normalized density, temperature and velocity.

solutions. These approximations were, therefore, identified as entropy-consistent
approximations to the material derivatives and were used to compute the shock
structure for the upstream Mach numbers up to M1 = 20 on a grid of fineness ratio
�x/λ1 = 0.1. Detailed shock structures for M1 = 5, M1 = 10 and M1 = 20 are shown in
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Figure 16. As figure 15, but for Mach 10.

figures 15, 16 and 17. The shock profiles of the entropy-consistent Model 2b equations
have also been compared with the profiles obtained from DSMC simulations of argon
modelled as a hard sphere gas. The DSMC computations were performed with the
program DSMC1S.FOR (see Bird 1994) for the same upstream conditions as the
Navier–Stokes and Model 2b computations. For the cases considered, the DSMC
profiles were obtained after evolving an ensemble of molecules for over 500 million
collisions.
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Figure 17. As figure 15, but for Mach 20.

From the plot of the heat flux profiles in figures 15(a, b), 16(a, b) and 17(a, b), it can
be seen that for the initial shock profile (obtained from a converged Navier–Stokes
solution) the Model 2b heat flux creates a positive spike just ahead of the shock. This
indicates a heat flux from a cold region, ahead of the shock, to a hot region within the
shock. However, as the Model 2b equations relax the initial shock profile, it is noticed
that the spike decreases in magnitude, thereby reducing this unphysical transport
of thermal energy. Figures 15(c–e), 16(c–e) and 17(c–e) compare the variations of
the normalized density, normalized temperature and normalized velocity obtained
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from DSMC, Navier–Stokes and Model 2b computations. In plotting the results in
figures 15–17 the origin (x/λ1 = 0) was chosen as the point where the normalized
density is equal to 0.5. There are several points to note in these comparisons. For the
M1 = 5, M1 = 10 and M1 = 20 normal shocks, the rise in the normalized density for the
DSMC and Model 2b profiles in the upstream region of the shock is in agreement.
However, in the downstream region of the shock, the DSMC density profiles spread
out more than the Model 2b profiles, thereby increasing the shock thickness. With
the temperature profiles it is seen that the DSMC profiles rise ahead of the Model 2b
profiles in the upstream region of the shock. The slight positive crest seen in the
heat flux profile, in figure 15(b), just ahead of the M1 = 5 shock causes the dip in
the normalized temperature profile as shown in figure 15(d). With an increase in the
shock strength it is seen (see figures 16d and figure 17d) that the positive spike in q̇x

and the dip in the normalized temperature are considerably reduced.
A feature of the solutions of the entropy consistent Model 2b equations is that the

normalized density profiles show a hump on the upstream side of the shock profile.
The region of this hump increases with shock strength, as seen in the M1 = 10 and
M1 = 20 normal shock profiles in figures 16(c) and 17(c). The computations of the
normal shock in argon with the BGK equation (Liepmann, Narasimha & Chahine
1962; Chahine 1963; Chahine & Narasimha 1965) (Boltzmann equation with the
BGK model for the collision integral) show a sharp drop in the normalized velocity
profiles in the upstream region of the shock. Such a drop is also seen in the normalized
velocity profiles of the Model 2b equations as shown in figures 16(e) and 17(e). The
location of this dip corresponds to the rise in the normalized density profiles. This
sudden rise in the density profile (and dip in the velocity profile) is not seen in either
the experimental density profiles (see Alsmeyer 1976) or the DSMC shock structure
computations (see Haviland 1962; Bird 1965). Since this hump is also seen in the
M1 = 20 density profile obtained with the augmented Burnett equations for a hard
sphere gas (see Zhong 1991) it may be conjectured that this behaviour is not peculiar
to the BGK model alone.

For the cases investigated, the shock thickness is computed using the maximum
gradients of density, temperature and stress. Although experimental measurements
of shock thickness are based on the maximum density gradient, it can be seen from
the Model 2b and DSMC computations that the temperature, stress and heat flux
profiles indicate a thicker shock. Therefore, the shock thickness is calculated from the
following expressions

tρ =
ρ2 − ρ1

(∂ρ/∂x)max

, tT =
T2 − T1

(∂T /∂x)max

, tτxx
=

µmax(u2 − u1)

|τxx |max

(7.4)

and max
(
tρ, tT , tτxx

)
is taken to be the shock thickness. Tables 12 and 13 show

the inverse shock thickness calculated from equation (7.4) for the Navier–Stokes and
Model 2b profiles. Table 14 compares the inverse shock thickness based on the density
gradients with the experimental measurements of Alsmeyer (1976), Camac (1965) and
DSMC predictions. It is seen that at low Mach numbers, the Navier–Stokes, Model 2b
and DSMC shock thickness are in close agreement. The extrapolated value of the
experimental shock thickness, however, indicates a thinner shock. At higher Mach
numbers, the Model 2b shock thickness lies in between the Navier–Stokes and DSMC
predictions. The experimental measures of the shock thickness, however, indicates a
thicker shock than any of the computational predictions. Also, the experimental
measures do not level off at high Mach numbers like the computational predictions
for a monatomic hard sphere gas.
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Upstream Inverse Inverse Inverse
Mach number Density thickness Temperature thickness Stress thickness

1.2 6.306 × 10−2 6.211 × 10−2 4.825 × 10−2

5.0 0.576815 0.471664 0.308457
10.0 0.647143 0.526993 0.436082
20.0 0.667823 0.542892 0.439383

Table 12. Shock thickness for argon computed using the Navier–Stokes equations. The
computed shock thickness measures are based on fine grid solutions, �x/λ1 = 0.1.

Upstream Inverse Inverse Inverse
Mach number Density thickness Temperature thickness Stress thickness

1.2 6.20585 × 10−2 6.18614 × 10−2 9.21306 × 10−3

5.0 0.503101 0.375218 0.184188
10.0 0.570015 0.405715 0.307753
20.0 0.586499 0.413692 0.308121

Table 13. Shock thickness for argon computed using the Model 2b equations. The computed
shock thickness measures are based on fine grid solutions, �x/λ1 = 0.1.

Upstream Mach BGK-Burnett DSMC Experimental
number, M1 Navier–Stokes (Model 2b) (hard sphere) (Alsmeyer; Camac)

1.2 6.306 × 10−2 6.20585 × 10−2 0.06 0.18636
5.0 0.576815 0.503101 0.4 0.261818

10.0 0.647143 0.570015 0.415 0.2227272
20.0 0.667823 0.586499 0.414 N/A

Table 14. Comparison of the inverse shock thickness based on density gradients. The Model 2b
and Navier–Stokes shock thickness predictions were based on a fine grid solution, �x/λ1 = 0.1.
The DSMC based inverse shock thickness for argon gas modelled as a hard sphere results
compares with the results of Welder et al. (1993). The experimental measures of the shock
thickness were obtained from Alsmeyer (1976); Camac (1965).

8. Summary and conclusions
The primary objective of this paper was to explore the possibility of formulating a

set of entropy-consistent second-order hydrodynamic equations. Towards this end, a
novel formulation known as the the BGK-Burnett equations, has been attempted by
extending the assumptions made in the formulation of the Navier–Stokes equations
to the second-order in the local Knudsen number. The molecules were assumed to
collide like ‘billiard balls’ and the ideal gas equation of state has been assumed.
The problems associated with frame dependence have been avoided by confining
this formulation to one spatial dimension. In the formulation of the second-order
distribution function, the difficulties associated with the highly nonlinear collision
integral were circumvented by using the more tractable BGK model equation. The
problem of closure has been addressed by solving a set of algebraic equations to
determine the moment closure coefficients. These coefficients are, however, not unique
and give rise to a family of BGK-Burnett equations. From this family of equations,
two sets of BGK-Burnett equations, namely, the Model 1 and Model 2 equations,
have been considered to illustrate the formulation of the equations and the ECRT
approach to identify approximations to the material derivatives that will make the
equations entropy-consistent.
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In the formulation of the Model 1a equations, the derivatives of the collision
frequency were neglected. This was based on the assumption that the variation in
collision frequency across a shock is small – an assumption that is valid only for
weak shocks. Although the linearized Model 1a equations were stable with Euler
and Navier–Stokes approximations for the material derivatives, an inherent fictitious
viscosity, that varied with pressure, made the equations stiff while computing strong
shocks with low grid fineness ratios. This caused the Model 1a equations to breakdown
on even coarse grids. Including the derivatives of the collision frequency gave the
Model 1b equations which have the same stability characteristics as the Model 1a
equations. These equations gave solutions on finer grids that indicated thicker shocks
than the Navier–Stokes predictions. However, an entropy analysis of the Model 1b
solutions showed that there was negative irreversible entropy production – a clear
violation of the second law of thermodynamics.

The Model 2 equations were formulated by requiring that the linearized BGK-
Burnett and Navier–Stokes equations have similar stability trajectories. By applying
the ECRT it was found that the Navier–Stokes approximation to D/D t (∂ux/∂x)
and setting D/D t (∂T /∂x) = 0 gave a set of Model 2b equations that are stable and
entropy-consistent. These equations were used to compute the shock structures for a
monatomic hard sphere gas for upstream Mach numbers up to M1 = 20 on a grid
of fineness ratio �x/λ1 = 0.1. A comparison of the Model 2b density profiles with
those obtained from DSMC computations shows that there is good agreement on the
upstream side of the shock. However, the DSMC density profiles are more spread
out in the downstream region, thereby adding to the shock thickness. The DSMC
temperature profiles rise ahead of the Model 2b profiles for all the strong shock
structures considered in this study. These differences notwithstanding, it has been
shown that by using the ECRT it is possible to identify an entropy-consistent set of
second-order equations from the family of BGK-Burnett equations.
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dissertation and the author would like to thank Professor Ramesh K. Agarwal for
providing the opportunity to pursue this research at Wichita State University and
the National Institute of Aviation Research, Wichita, Kansas. The author is grateful
to Professor G. A. Bird for providing the DSMC computer program to compute the
DSMC shock profiles. The author would like to thank Professor Philip L. Varghese
and Mr Ju Zhang for clarifications regarding the various parameters in the program
DSMC1S.FOR. The author would also like to thank Professor Alejandro Garcia
for helpful discussions regarding DSMC computations. Special thanks are due to
the referees of this paper for their insightful comments and constructive criticisms;
many of which motivated revisions to the initial draft. The author would also like
to acknowledge the encouragement, financial support and computational facilities
provided by the Center for Simulation of Advanced Rockets at the University of
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